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 Abstract  

A single coherent framework is proposed to synthesize longstanding 

research on eight seemingly unrelated cognitive decision-making biases. 

During the past six decades, hundreds of empirical studies have resulted 

in a variety of rules of thumb that specify how humans systematically 

deviate from what is normatively expected from their decisions. Several 

complementary generative mechanisms have been proposed to explain 

those cognitive biases. Here it is suggested that (at least) eight of these 

empirically detected decision-making biases can be produced by simply 

assuming noisy deviations in the memory-based information processes 

that convert objective evidence (observations) into subjective estimates 

(decisions). An integrative framework is presented to show how similar 

noise-based mechanisms can lead to conservatism, the Bayesian likelihood 

bias, illusory correlations, biased self-other placement, subadditivity, 

exaggerated expectation, the confidence bias, and the hard-easy effect. 

Analytical tools from information theory are used to explore the nature 

and limitations that characterize such information processes for binary 

and multiary decision-making exercises. The ensuing synthesis offers 

formal mathematical definitions of the biases and their underlying 

generative mechanism, which permits a consolidated analysis of how they 

are related. This synthesis contributes to the larger goal of carving a 

coherent picture out of the myriad of seemingly unrelated biases and their 

potential psychological generative mechanisms. Limitations and research 

questions are discussed. 
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 When human judges make decisions, they essentially make a choice among several 

alternatives (Edwards, 1954). It turns out that these choices are “predictably irrational” 

(Ariely, 2008). We always end up with the same kinds of deviations from what is 

normatively predicted by classical probability and utility theory to be the optimal outcome 

of those choices. The consistency of such systematic biases can be useful for predicting 

individual behavior and can also have disastrous large-scale consequences for society as a 

whole. If the mistakes in our judgments were random, the deviations would cancel each 

other out. For example, in a specific situation, some investors would overestimate and 

others underestimate risk. The overall result would be a self-regulating social system, 

indistinguishable from the one proposed by the efficient market hypothesis with its rational 

actors. Contrary to such views, however, our judgments are systematically biased toward 

one side or the other, and in specific situations, the large majority of investors will either 

over- or underestimate risk, not both. The worldwide economic crisis of 2008 delivered 

hard evidence for such dynamics (Ariely, 2008) and left many previous defenders of the 

rational and efficient market hypothesis in “shocked disbelief” (Greenspan, 2008; p. 16).  

 

Biases, Their Models, and Outline 

For psychologists, human irrationality is old news. Six decades of psychological 

research on human judgment and decision-making have produced an impressive list of 

“heuristics and biases” (Tversky & Kahneman, 1974).  A bias usually takes the following 

form: when confronted with evidence of type X, a judge will consistently chose alternative B 

instead of the expected alternative A. Because we are very consistent with our biases, rules 

that describe such biases have large predictive power (Baron, 2007; Hastie & Dawes, 2001; 

Rubenstein, 1998;; Wilkinson, 2007). A popular text book lists 53 such biases (Baron, 2008; 

Table 2.1).  

Yet despite the predictive power of the rules that describe these biases, many are 

still hesitant to take these findings as a solid foundation for larger theories. One reason for 

this hesitation is that the list of biases is a quite loose grab bag of empirical regularities that 

still lacks the foundation of a thorough theory itself. This state of affairs has contributed to 

what another popular textbook describes as “quite conflicting beliefs regarding 

fundamental aspects” of human decision-making (Wilkinson, 2008, p.12). The identification 

of “if X, then B” statements is an important first task in describing human behavior, but it 

does not explain the origin of these deviations and how they are interrelated. In short, we 

have a solid description of many parts but do not yet see the big picture. A coherent and 

solid theory of human decision-making would require such understanding. In this article I 

attempt to contribute to this goal by offering a conceptual foundation for the integration of 

several biases within one common frame of reference.  
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Complex and Simple Generative Mechanisms for Cognitive Biases 

In the search for generative mechanisms of our cognitive biases, an obvious first 

suggestion is that their consistencies occur because we all share the same information 

processing system: the human mind. Because the mind’s information processing capacity is 

biologically limited (for example, we possess neither infinite nor photographic memory), we 

end up with “bounded rationality” (Simon, 1955, 1956). Additionally, we also seem to 

employ short-cuts in our information processing that aim at reducing cognitive effort, 

known as “heuristics” ( Goldstein, & Gigerenzer, 2002; Kahneman, Slovic, & Tversky, 1982; 

Shah & Oppenheimer, 2008). These simple but often effective approximations make us use a 

representative case instead of the specific one (representativeness).  They also make us 

work whatever first comes to mind (availability); and based on our first thoughts, it turns 

out that the subsequent mental search process is limited (adjustment and anchoring). Other 

potential generative mechanisms for our cognitive biases are emotional and moral 

motivations (Loewenstein, Weber, Hsee, Welch, & Ned, 2001; Pfister & Böhm, 2008), as well 

as social influences (Wang, Simons, & Bredart, 2001; Yechiam, Druyan, & Ert, 2008). Last 

but not least, it has been proposed that noisy information processing leads to bias in our 

decision-making. Loosely speaking, we understand “noise” as “distorted mixing of 

information flows” (a more concrete definition will follow later). These are to be expected in 

human judgment. Our mind is the result of biological evolution, which does not strive for 

perfection or even theoretical optimization, but simply for a competitive degree of “fitness” 

in a specific environment. From this perspective, it should not be surprising that the design 

of the information processing system we employ when making decisions is imperfect and 

that a certain degree of distortion takes place arising simply from the sloppy design of the 

system.  

In this article, I exclusively focus on this last kind of generative mechanism for our 

cognitive biases: noise.  I identify four distinct mental processes and assert that eight 

empirically detected decision-making biases are the inevitable result if we suppose a certain 

and justifiable kind of distortion in these processes. Thus, the present argument is about 

sufficient rather than necessary conditions. The major theoretical point is that simple 

properties of a noisy information processing system are sufficient to produce several biases. 

This argument does not exclude the possible contribution of more complex factors—such as 

heuristics, higher cognitive functions, emotions, motivations or social influences—which 

may also be sufficient but not necessary to understand the phenomena of interest. Yet 

because the supposition of noisy information processing is a simple and elegant way to 

account for the chosen biases, the conclusions of this article will argue that Occam’s razor 

favors naturally occurring noise as the most likely explanation.  
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A Synthesis of Models  

The approach taken in this article follows the logic of existing computer models that 

simulate several cognitive biases. I do not, however, present a review of all existing 

computer models, propose a new model, or offer a competitive test of different models. 

Rather, my purpose is to present an analytical synthesis of several existing models through 

a systematic literature review.  The presented framework provides a unifying theoretical 

framework for a considerable number of existing noise-based models of cognitive biases. I 

provide mathematical proofs that many of these models are merely a special case of the 

broader information theoretic logic outlined in this article. 

My approach is inspired by memory models suggesting that judgments and 

decisions are produced by storing and subsequently retrieving objective evidence in 

memory and that biases are the result of distortions in this mental process. These models 

have their roots in the late 1970s and early 1980s (e.g. McClelland & Rumelhart, 1985; 

Medin & Schaffer, 1978; Whittlesea 1983; see also Hintzman’s well-known MINERVA model, 

1984, 1988). In these models, computers are essentially fed with some input and then 

researchers search for a specific kind of distortion of this input (noise) that results in a 

retrieved output resembling the irrational behavior of human judges. Some models, for 

example, study the effects of incomplete storage in and retrieval from memory (e.g., Fiedler, 

1996; Linville, Fischer, & Salovey, 1989; Metcalfe, 1990;). These models are much in line 

with the previously mentioned argument that our biological information processing 

capacities are limited.  

I also focus on another kind of noise in the process of storage in and retrieval from 

memory: confusion and mix-up of evidence. In so-called “stochastic models,” the input is 

distorted according to a probability distribution that represents the error, which leads to a 

mixed-up output consisting of input+error. In 1994, Erev, Wallsten, and Budescu showed 

that a specific kind of distortion of some evidence (for example, log-odds plus normally 

distributed error) can lead to judgments that simultaneously reveal two seemingly 

unrelated biases: what they call conservatism and overconfidence. At the same time, 

Wallsten and González-Vallejo (1994) set up a computer-aided “stochastic model of 

judgment and response,” which disturbs input values with symmetric and single peaked 

noise. Encouraged by these successes, various researchers proposed a series of so-called 

“random error” or “stochastic models” (see special issue of Journal of Behavioral Decision 

Making, Vol.10,3; Budescu, Erev, Wallsten, &Yates, 1997a). All of them follow the same logic 

but vary in the kind of noise applied (for example, Budescu, Erev, & Wallsten, 1997b, use a 

binomial error distribution) and other kinds of technical fine-tuning of matching and 

parameters setting (see also Budescu, Wallsten, Au, 1997c; Juslin, Olsson, & Bjorkman, 

1997;;Merkle, 2009). In 1999, Dougherty, Gettys, and Ogden showed that the logic of 

Hintzman’s MINERVA model (1984, 1988) can be used to replicate several distinct 

violations of rationality, including conservatism, overconfidence, and the hard-easy effect 

(called MINERVA-DM = decision-making). This model was subsequently used to artificially 



TOWARD A SYNTHESIS OF COGNITIVE BIASES…   Oct.2011                            7 
 

 

replicate other biases (Bearden & Wallsten, 2004; Dougherty, 2001). Appendix B reviews 

the basic modus operandi of MINERVA-DM (using the information-theoretic channel logic 

that we will work with in this article, see also Appendix A).  

These models suggest that several of the empirically detected human decision-

making biases can be understood as distortions in the process of storage in and retrieval 

from memory. The problem with these kinds of computer simulations, however, is that they 

often seem quite arbitrary: the parameters that define the distortion are naturally fine-

tuned to favor the desired outcome. The results show only that a specific configuration of a 

computer program (with one out of many possible parameter settings) can replicate the 

empirical regularity of biases X and Y, and another specification can replicate the patterns of 

bias Z. We know little about the boundary properties of these settings or the margins within 

which they work and do not work.  Nor do we know if it is inevitable that the same 

parameter settings must inevitably produce different biases,or if a specific kind of noise is 

merely a special case. Worse, we know even less about how these parameter settings are 

tied to psychological processes and what the generative mechanisms might be that lead to 

different kinds of noise. What are the limits within which a specific kind of noise works? Is 

there a class of error distributions that can simultaneously explain a range of seemingly 

unrelated biases? How are the biases related? Is it psychologically justifiable to suppose this 

or that kind of distortion? These are some of the questions that previous work leaves open, 

and that the present synthesis proposes to answer. 

 

Outline of and Contributions to Selected Biases  

Table 1 provides guidance throughout the article. Many of its ingredients will 

become clearer as the different arguments are elaborated. In general, I postulate that a 

similar kind of distortion can appear in four different mental processes involved in storage 

in and retrieval from memory. The left column in Table 1 lists these four kinds of 

distortions: noise between input evidence and output estimate (referred to as Ê|E), noise 

between output estimate and input evidence (called E|Ê), noise between memory and 

output estimate (Ê|M), and finally, noise between output estimate and memory (M|Ê). The 

second column (from the left) in Table 1 lists the eight cognitive biases I will synthesize in 

this study. As shown in the Table, five of the biases can be attributed to the same cause: a 

specific kind of noise between the objective input evidence and the subjective output 

estimate. The other three biases originate from the remaining three noise-based generative 

mechanisms. The fourth column in Table 1 lists selected studies (both historical and more 

recent) that have empirically detected these irrational regularities . The list of studies is not 

exhaustive; it could easily be expanded to a list that contains hundreds of controlled 

experiments. I elaborate the rest of the specifications in Table 1 throughout the article. The 

formulas in the third column show the mathematical formalizations of the distinct biases, 

based on the definitions of the synthesizing framework.  These allow unambiguous 

formalizations of the co-dependencies among and relations across those seemingly 
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unrelated biases. The properties in the left column specify the kind of noise sufficient to 

produce the identified kinds of biases. 

 

Table 1: Summary of the biases included in this study and related empirical studies, including 
mathematical formalizations based on the noisy memory channel framework  
 

Generative 
mechanism: 
Noise properties that 
can produce biases 

Bias: 
Empirically observed 
deviation from normative 
expectation 

Mathematical 
formalization of the 
bias based on the 
noisy memory 
channel  

Selected examples of 
empirical research that 
detected the bias  

Noise (Ê|E) between 
Evidence and Êstimate: 
 
-For binary decision-
making tasks: Properties 
B and Ni. 
- For equidistant 
decision-making tasks: 
Properties S and N, or S 
and U.  
-All other kinds of 
decision-making tasks: 
Properties D and N. 

Conservatism:  
Based on the observed 
evidence, estimates are 
not extreme enough 

0 ≤ [r x σÊ] ≤ σE 

0 ≤ [r x σ P(Ê)] ≤ σP(E) 

Kaufman, et.al. (1949); 
Attneave (1953); 
Fischhoff, et.al. (1977);   
MacGregor, et.al (1988); 
Fiedler (1991). 

Bayesian likelihood: 
estimates of conditional 
probabilities are 
conservative 

0 ≤ [r x σ P(Ê|c)] ≤ σP(E|c) 
with c being some 
overall conditioning 
event for the task 

Phillips and Edwards 
(1966); Phillips, et.al. 
(1966); Edwards (1968); 
DuCharme (1970); 
Messick and Campos 
(1972). 

Illusory correlation of 
minority stereotyping:  
estimates on a two-
dimensional distribution 
become correlated 

0 ≤ [r x σÊ|c] ≤ σE|c 

0 ≤ [r x σ P(Ê|c)] ≤ σP(E|c) 

With c being a cross-
tabulated event 

Hamilton and Gifford 
(1976); Hamilton, 
Dugan, and Trolier 
(1985); Pryor (1986); 
Fiedler (1991); Smith, 
(1991). 

Placement: estimates 
about myself are better 
than estimates about 
others 

0 ≤ slopeE others ≤ 
≤ slopeE own ≤ 1 

Cooper, et.al. (1988); 
Kruger and Dunning, 
(1999); Kruger (1999); 
Moore and Cain (2007); 
Moore and Healy (2008). 

Subadditivity: estimate of 
a likelihood is less than 
the sum of its (more than 
two) mutually exclusive 
components 

p(êi) ≤ Ʃ p(êd) 
with d being a 
decomposition of 
event i. 

Tversky and Koehler 
(1994); Redelmeier, 
et.al. (1995);   Fox and 
Levav (2000); Bearden 
and Wallsten (2004).  

Noise (E|Ê) between 
Êstimate and Evidence: 
 
-Binary: Properties B 
and Ni. 
- Equidistant: Properties 
S and N, or S and U.  
-All others: Properties D 
and N. 

Exaggerated 
expectation: Based on the 
estimates, real-world 
evidence turns out to be 
less extreme than our 
expectations  
(conditionally inverse of 
the conservatism bias) 

σP(Ê) ≥ [r x σP(E)] 

Waagenar and Keren 
(1985);  Erev, Wallsten 
and Budescu (1994). 
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Source: Author. 

 

Based on Table 1, it can be seen that the contributions of this article are three-fold: 

Formalization of eight biases: This integrative framework allows us to 

unambiguously define each of the biases in mathematical terms, enabling clear distinctions 

between them. Until now, literature has often given different names to the same biases and 

the same names to different ones (Shah & Oppenheimer, 2008). Seminal papers in the field, 

like Erev et al. (1994), Dougherty et al., (1999), or Moore and Healy (2008), refer to 

different findings when using terms like conservatism, underconfidence, and 

overconfidence.  One the one hand, this is nothing new in science, where conventional 

wisdom holds that “a scientist would rather use someone else’s toothbrush than another 

scientist’s nomenclature” (Gell-Mann, 1995a, p. 18). On the other hand, verbal formulations 

are often simply too slippery to clearly define the subject matter of interest.  We should 

credit Galileo’s insight (1623): “the book [of nature] cannot be understood unless one first 

learns to comprehend the language and read the letters in which it is composed. It is written 

in the language of mathematics […] without these, one wanders about in a dark labyrinth.” 

(p. 238)  I present clear-cut and unambiguous mathematical definitions of each bias, based 

on one common conceptual framework.  I also give names to these biases, but the names are 

smoke and mirrors: It is the mathematical definition according to a common conceptual 

framework that defines the phenomenon, not an arbitrarily chosen verbal description. 

Formalization of four noise-based generative mechanisms: This framework 

allows us to provide formalizations of the distinctive generative mechanisms that can 

produce these biases. The Appendices to this article present mathematical proofs showing 

that the presented kinds of noise must produce the corresponding biases.  I also relate the 

identified kinds of noise to intuitively plausible psychological processes and propose some 

justifications for the identified kinds of mental noise.  

Noise (Ê|M) between 
Memory and Êstimate: 
 
-Binary: Properties B 
and Ni. 
- Equidistant: Properties 
S and N, or S and U.  
-All others: Properties D 
and N. 

Confidence:  
Based on a specific level of 
confidence, the confidence 
in judgments is too 
extreme 0 ≤ [r x σP(Ê)] ≤ σP(M) 

Adams and Adams, 
(1960);  Lichtenstein 
and Fischhoff (1977); 
Lichtenstein, Fischhoff, 
and Phillips (1982);  
McClelland and Bolger 
(1994); Keren (1997); 
Fischer and Budescu 
(2005). 

Noise (M|Ê) between 
Êstimate and Memory: 
 
-Binary: Properties B 
and Ni. 
- Equidistant: Properties 
S and N, or S and U.  
-All others: Properties D 
and N. 

Hard-easy:  Based on a 
specific level of task 
difficulty, the confidence 
in judgments is too 
conservative 
(conditionally inverse of 
the confidence bias) 

σP(Ê) ≥ [r x σP(M)] 

Lichtenstein and 
Fischhoff (1977);  Keren 
(1988); Suantak, et.al. 
(1996); Juslin, et.al. 
(2000); Merkle (2009). 
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Formalization of the relation between these biases: Given the use of a common 

conceptual framework and the mathematical formalization of biases and their generative 

mechanisms, I am able to formalize the relationships between and interdependencies 

among different biases and their potential causes, allowing the identification of limits to and 

trade-offs among these phenomena.  The hope is that a better understanding of the 

relations between seemingly unrelated biases will not only clarify their existence by 

providing a solid theoretical foundation but also eventually enhance the search for coherent 

prescriptive strategies to confront, moderate, or remedy these psychological irrationalities.  

The theoretical background of this synthesizing framework is derived from the 

conceptual tools of information theory1 (see the introductory texts Cover & Thomas, 2006, 

and Massey, 1998). The application of information theory to psychological decision-making 

goes back at least to Miller (1956), one of the most cited articles in the history of 

psychological research.  However, information theoretic approaches to psychology have 

more recently been quietly abandoned and even declared to be an enterprise in vain 

(Duncan, 2003). While information theory has developed a large variety of ideas and 

concepts, I will focus on one very specific contribution: the rigorous analysis of the 

mechanisms involved when information is processed through a noisy channel (going back 

to Shannon, 1948; see also Chapter 4 in Massey, 1998; and Chapters 7 and 9 in Cover & 

Thomas, 2006).  This set of tools will help us to explore key characteristics and boundaries 

of stochastic transformations from objective input evidence to subjective output estimate. 

 

 

The Noisy Memory Channel 

I term this conceptual synthesis the “noisy memory channel” (Figures 1 and 2). This 

kind of schematization of an information process might seem a little unconventional. For 

those readers who would like to warm up before getting more formal, I provide an 

introductory analogy in Appendix A. As intimidating as these figures might appear, this way 

of representing information processes turns out to be extremely useful when reasoning 

analytically about the properties of such processes.  

The channel represents a probabilistic (stochastic) transform of one random 

variable into another. We use capital letters, like E, to range over all possible values e1, e2, … 

ei of the random variable. Each of these realizations has a different probability of 

appearance: p(ei). The random variable “E” represents the objective input evidence 

encountered by a decision-maker. This objective input evidence is transformed by the noisy 

memory channel into the subjective output estimate (represented by the variable Ê, or “E 

hat”) (Figure 1). More specifically, this transformation is intermediated by a transitional 

storage of the input evidence in some kind of memory (M) (Figure 2).   
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Figure 1: The overall noisy memory channel from evidence to estimate (binary choice) 

 

Source: Author. 

Most computer simulations treat the storage and retrieval subchannels as one and 

the same channel and focus on the noisy transformation of objective evidence E into some 

distorted subjective estimate Ê (e.g., Budescu et al., 1997b; Erev, et al. 1994; Juslin et al., 

1997; Merkle, 2009; Wallsten & González-Vallejo, 1994;). Figure 1 represents such a 

channel for a binary decision-making exercise—i.e., a choice between two options. The 

input for the memory channel usually originates from the external environment, as 

evidence or experienced events. Thus the different values of E can be any observable 

cognitive chunk, such as colors, words, ideas, concepts, events, or numbers, among many 

others. In a decision-making task, however, the number of values e1, e2, e3, etc. over which E 

ranges depends on the number of choices between which the judge must choose.  

The transformation of E into the subjective estimate Ê depends on the conditional 

probabilities P(Ê|E): given evidence e1, what is the probability of obtaining estimate ê1? In 

the best-case scenario, evidence e1 would be flawlessly converted into estimate ê1, and e2 

into estimate ê2, etc. This is the case when p(ê1|e1) = 1,  or p(ê2|e2) = 1, etc. We will call these 

kinds of horizontal transformations p(êi|ei) “identity transitions” (or more precisely 

“mutual information transitions”, see Massey, 1998, Ch.1; Cover and Thomas, 2006, Ch.2). 

Suppose, however, that as shown in Figure 1, there are several crossover possibilities, e.g. 

p(ê2|e1) ≠ 0 and/or p(e1|ê2) ≠ 0. These kinds of crossover transitions, p(êx|ei) with x ≠ i, are 

the kind of “noise” we are interested in in this article. This background provides us with a 

graphical and clear definition of noise as distortion and mixing.  

p(e1) e1 m1 ê1 p(ê1)

p(e2) e2 m2 ê2 p(ê2) 
. . .
. . .
. . .

Entering Mediating Êxiting
Environmental  ➙ Storage Channel ➙ Memory   ➙ Retrieval Channel  ➙ Êdited
Evidence Êstimate

Identity 
transition / 
detection

Noise / 
equivocation

p(ê1|e1) 

p(ê2|e1)

p(ê2|e2) 

p(e1|ê1) 

p(e2|ê2) 

p(e2|ê1)

p(e1|ê2)p(ê1|e2) 



TOWARD A SYNTHESIS OF COGNITIVE BIASES…   Oct.2011                            12 
 

 

Figure 2: The noisy memory channel consisting of storage and retrieval subchannels

 

Source: Author. 

 

The storage of input evidence in memory creates another random variable, which 

we denote with “M.” “Remembering,” “learning,” “perceiving,” or simply “sensing” are 

processes that convert objective evidence E into memories M. We then retrieve our estimate 

from M to obtain our estimate Ê. Probabilistically, the overall channel from evidence to 

estimate, P(Ê|E)(Figure 1), is the product of the two transition matrices of the storage, 

P(M|E), and retrieval channel, P(Ê|M) (see Figure 2).2 

The noisy memory channel is of analytical interest because it helps us to understand 

what can go wrong where, for example, given the probabilities of each realization of E, and 

of each transition probability P(Ê|E), we are able to calculate the probability of each value of 

Ê.3 We can also analyze the channel from the point of view of our estimates, with conditional 

probabilities P(E|Ê) (sometimes referred to in information theory as “equivocation”). This 

perspective looks at the noisy memory channel from the left to the right and asks about the 

probability of the objective evidence E, given our estimate Ê. The “identity transition”, 

p(ei|êi), detects the “hit rate” of the estimate, or how often a particular estimate is correct. 

To keep things simple, however, we will often refer to both P(Ê|E) and P(E|Ê) as noise. Of 

course, the attentive reader has already realized that both kinds of noise are related by 

Bayes’ theorem: P(E|Ê) = [P(Ê|E) x P(E)]/P(Ê). In words: the probability of a wrong 

estimate is directly related to the noise of the memory channel (by Bayes’ theorem), and 

vice versa. 
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In our application of this model to the first six biases (conservatism, Bayesian 

likelihood, illusionary correlation, placement, subadditivity and exaggerated expectation, 

see Table 1), it will not be necessary to worry about the precise route some evidence input 

ei takes through memory M to be converted into an estimate Ê. We will be concerned only 

with the transformation between evidence E and estimate Ê (Figure 1). To understand the 

other biases (the confidence bias and the hard-easy effect), memory becomes important 

(Figure 2). In reality, some kind of memory always plays a role in every judgment and 

decision-making process. Yet  M might represent different kinds of memories, such as 

sensory-, working-, short-term, or long-term memory, episodic, semantic, etc. Nevertheless, 

because “information is physical” (Landauer, 1991), ((pg #))without any intermediate 

internal representation in some kind of storage (however short and unstable), information 

could not be processed.  

Figure 2 also presents the psychologically special cases of illusions, inaccessibility, 

and forgetting, which are represented by e0, m0 and ê0.4 Unfortunately, the empirical 

evidence analyzed in this article does not allow us to go deeply into the issues raised by 

forgetting and illusions. Nevertheless, they are part of the model as a whole. Furthermore, 

the model does not require that the number of values of the input variable e1, e2, … ey be the 

same as the number of values of the output variable ê1, ê2, … êz (i.e., it need not be the case 

that y = z, but for our purposes it is reasonable to assume that y = z).   

 

In principle, channels can have millions of different input and output variables, each 

with different input-, crossover-, and deletion probability distributions. The transition 

probabilities and characteristics of these channels can quickly get incredibly complex and 

laborious to analyze (for the most common channels see Cover & Thomas, 2006, Chap.7; 

Massey, 1998, Chap.4). Appendix B, for example, shows that the MINERVA-DM model 

(Dougherty, et al. 1999; Hintzman, 1984, 1988;) is merely one special realization of the 

boarder logic presented in Figure 2.  The goal is to find those properties that describe the 

human memory channel in agreement with empirically detected decision-making biases.   
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Noise in the Overall Memory Channel 

Noise (Ê|E) between Evidence and Êstimate: Five Biases from one 

Generative Mechanism 

I start my analysis of biases with those that can be generated by noise between the 

evidence and estimate (Ê|E) (see Figure 1). I show that some basic properties of this 

channel can generate five distinctively recognized empirical findings. All of them can be 

explained with what is known as “regression,” “averaging,” or “conservatism.” 

 Formalizing the conservatism bias.   

“Conservatism” refers to the experimental finding that people tend to underestimate high 

values and high likelihoods/probabilities/frequencies and overestimate low ones. As even 

this rough statement of conservatism indicates, I must distinguish between two kinds of 

input for our channel: the transformation of the values of the random variable (E, which can 

be nominal, ordinal, interval, or ratio) or the transformation of the respective likelihoods of 

occurrence (p(E)) (compare with Figures 1 and 2). I distinguish these two cases and make 

clear which one is under consideration, but in essence, conservatism works for any kind of 

measurable values and for likelihoods/probabilities/frequencies. 

In a classic study, Kaufman, Lord, Reese, and Volkmann (1949) found that people 

tend to overestimate the number of dots that were flashed on a screen in a random pattern 

when only few dots are shown (between 5-10 dots) and underestimate the number of dots 

when many dots are shown (15-210 dots). In this case, the bias concerns the estimation of 

absolute values on an interval scale (number of dots, represented by the values of e1 and e2). 

Another example is that people overestimate the number of practicing physicians in Lane 

Country (subjective estimate: 456; versus objective evidence: 350), and underestimate the 

number of cigarettes consumed in the U.S. (subjective estimate: 1.5 billion; versus objective 

evidence: 604 billion) (MacGregor, Lichtenstein, & Slovic, 1988). 

One limitation of the case of non-normalized numbers on an interval scale is that it 

is often difficult to say which values/numbers are “high” and which are “low”. Is the number 

of cigarettes consumed in the U.S. high or low? Compared to China it seems low, but 

compared to Lichtenstein is seems high. Without a normalization scale it is often tricky to 

detect the conservatism bias for absolute values.  

This insight provides a rationale for why the most straightforward and reliable 

studies on the conservatism bias are based on so-called likelihood, probability, or frequency 

estimates of some input, represented by the values of p(e1) and p(e2) (e.g., Greene, 1988; 

Hasher & Zacks, 1984; Hintzman, 1969; Howell, 1973; Zuroff, 1989; Fiedler, 1991). In these 

kinds of tasks, subjects do not estimate the value of ei, but its probability p(ei) (compare 

Figures 1 and 2). Because probabilities are normalized between [0-1], it is straightforward 

to define “high” (close to 1) and “low” (close to 0) when estimating 
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likelihoods/probabilities/frequencies. For example, we overestimate the probability of rare 

causes of death and underestimate frequent ones (Fischhoff, Slovic, & Lichtenstein. 1977); 

we are conservative in estimating the likelihood of being male or female after being 

presented with the height of a person (DuCharme, 1970); and we are conservative in our 

estimates of how often specific letters appear in newspaper articles (Attneave, 1953). For 

these kinds of exercises the input random variable is not required to be an interval or ratio 

variable; it might also be categorical (such as causes of death, man or woman, colors, letters 

of an alphabet, etc).  

Empirical studies distinguish between two different methods of obtaining P(Ê): 

likelihood and probability estimations (e.g., what is the likelihood or probability of an event 

expressed as a percentage?) and frequency estimates (e.g., how often does an event occur?).  

Probabilities and frequencies are essentially related by the law of the large numbers (when 

numbers are large: “frequencies approximate probabilities”). Kahneman and Tversky 

(1982) referred to these modes of judgment as singular and distributional, respectively, and 

argued that frequency estimates usually provide more accurate results than estimates 

based on singular belief assessments (see also Tversky and Koehler, 1994). Of course, it is 

often not possible to count frequencies (what is the probability that the world will end 

tomorrow?). Notwithstanding these differences, for reasons of simplicity we will treat them 

both equally and refer to them as likelihoods in this article.  

Traditionally, the input and output of a decision-making task are represented on a 

two-dimensional x/y-plane, such as in Figure 3a. Empirical studies of the conservatism bias 

have detected that subjective estimates (êi for absolute values, or p(êi) for likelihood 

estimates) are, on average, closer to their mean than objective evidences, ei or p(ei), which 

are “spread out” toward their extremes. In other words, estimates are “conservative” with 

respect to the evidence, because the estimates’ extremes are less accentuated and closer to 

their means. 

Let us formalize this bias in mathematical terms. There are several measures that 

can be applied to quantify the notion of how distant measures are from their mean. The 

measure most widely used in psychology is variance, or its square root, the standard 

deviation.  In these terms, conservatism holds that the standard deviation of the output 

estimate (typically depicted on the y-axis) is smaller than the standard deviation of the 

input evidence (on the x-axis): σÊ ≤ σE. 

As long as there is a positive correlation between evidence and estimates, the slope 

of the regression line between E and Ê, based on the x-axis E, is between 0 and 1 (see Figure 

3a). This characteristic finding can be seen from the following transformations: 

 0 ≤ slopeE ≤ 1    (I) 

 0 ≤ [r 
x
 σÊ] / σE ≤ 1 

 0 ≤ [r 
x
 σÊ] ≤ σE      (II) 

 0 ≤ cov(E,Ê) ≤ Var(E)   (III) 
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Figure 3: (a) Traditional representation of likelihood conservatism in a binary decision-making 

task; (b) Result of a memory channel that fulfills Properties N and S for (Ê|E) (bounded-noise 

conservatism channel); or Properties S and U for (Ê|E) (unbounded-noise conservatism channel).  

  

Source: Author.  

 

Equations (I), (II), and (III) are different reformulations of what will be our official 

definition of conservatism (as presented in Table 1). As long as the regression coefficient r 

is positive (r > 0), the inequality of equation (II) shows that σÊ ≤ σE will always lead to 0 ≤ 

slopeE ≤ 1 (because r is always ≤ 1), in agreement with the inequality of equation (I).  

               We are left with several alternative cases for which conservatism has been detected, 

including estimates of non-normalized numerical value inputs and estimates of likelihoods, 

as well as for selections among only two different choices (binary decision-making tasks, 

compare the set up in Figure 1) or among a multitude of choices (multiary decision-making 

tasks, compare Figure 2). Instead of going through all of the resulting four cases I will focus 

the present analysis on the case of binary likelihood estimates for the Bayesian likelihood 

bias—which provides conservatism in case of conditioned probabilities—and the case of 

pure conservatism among non-normalized numerical value estimates in a multiary 

decision-making task. Traditionally, these biases are treated separately in the literature, and 

I will follow this custom.  Still, these biases are actually quite very similar.   

 

 Regressive Bayesian Likelihood: The Case of Binary Likelihood Estimates  

Although rather simple, binary decisions are the most important case of human 

decision-making. The vast majority of empirical decision-making research has focused on 

binary choices (e.g., yes or no, right or wrong, man or woman, more or less likely, this or 

that, more or less, continue or stop, increase or decrease, back or forth, believe it or not, 
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etc.). Many judgments naturally come down to binary choices, because all kinds of questions 

can be formulated as requests for an estimate about the event in question and its 

complement (event versus not-event). 

The “Bayesian likelihood” or “Bayesian odds” bias refers to the case of estimating 

conditional probabilities (DuCharme, 1970; Edwards, 1968). This is conceptually identical 

to straightforward likelihood estimates discussed in the previous section; the sole 

difference is that the estimates are conditioned on some concretely defined event. The 

underlying logic with regard to conservatism remains the same. In controlled experiments, 

people are typically presented with some condition ci and based on this condition asked to 

estimate a probability, p(?|ci). The results show that human estimates are conservative 

when compared with objective conditional probability, as calculated by definition of 

conditional probability, [p(?|ci) = p(?,ci)/ p(ci)], or alternatively through Bayes' theorem, 

[p(?|ci) = p(ci|?) x p(?) / p(ci)]. This is also the reason for the somewhat unfortunate name of 

the effect. In this regard it is interesting to point out that original studies of the 

phenomenon (Edwards, 1968; Phillips & Edwards, 1966;) simply referred to the bias as 

“conservatism in human information processing”, which is more straightforward as, strictly 

speaking, Bayes’ theorem is not necessary in this case. 

In a classic study, DuCharme (1970) presented judges with the height of a person 

and asked them to estimate the person’s gender : that is, to infer p(gender|height). We 

know that height and gender are related: men tend to be taller (back in the 1960s the 

average height of men was 173cm or 68’) and women smaller (160cm or 63’). In agreement 

with the conservative Bayesian likelihood effect, judges tended to underestimate the 

number of tall men and overestimate the number of tall women.  Dougherty et.al. (1999) 

have shown that this finding can be replicated with the MINERVA-DM application. The 

MINERVA-DM multi-trace memory model (based on Hintzman, 1988) essentially executes 

the logic of a so-called “binary symmetric channel” (BSC) in the retrieval channel (see 

Appendix B). In a binary symmetric channel, both identity transitions, and both noise 

transitions are equal, p(male|male) = p(female|female) = α; and p(female|male) = 

p(male|female) = 1 – α (see Figure 4; for more see Cover & Thomas, 2006, Ch.7; and Massey, 

1998, Ch.4).  

Figure 4 models DuCharme’s (1970) findings with a binary symmetric channel 

between the two possibilities. In Figure 4a, the judgment is conditioned on people taller 

than 167.1cm. As argued by Dougherty et.al. (1999), this can be understood as limiting 

search in memory to a specific subgroup of memory traces. Within this identified subgroup 

of tall people, we know that there are many more men than women. According to 

DuCharme’s objective evidence, 92% of the people taller than 167.1cm are men and only 

8% are women. The channel transforms both likelihoods into values that lie “somewhere in 

between” 0.08 and 0.92. The estimates are “regressive” or “conservative”. The same logic, in 

reverse, accounts for people with height smaller than 163.3cm (Figure 6b).  
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Figure 4: Bayesian likelihood bias: Conservatism of conditional probabilities modeled with a 

binary channel. (a) conditioned on people taller than 167.1cm; (b) conditioned one people smaller 

than 163.3cm. 

   

Source: Author, based on DuCharme (1970) 

For our specific purposes, it does not matter if we represent the judge’s memories as 

a multi-trace “episodic memory” (Baddeley et. al., 2009, Ch. 5), in which each event has its 

own memory trace (out of 100 memories of people taller than 167.1cm, the participant 

remembers that 92 are men), or as a form of “semantic memory” (Baddeley et.al., 2009, 

Ch.6), in which there are only two events with different weights (0.92 for men, and 0.08 for 

women) and the participant learned each weight (see also Fiedler, 1996). 

 

Channel Properties for Binary Decision-making Tasks 

Does the binary symmetric channel always produce conservatism? Does it matter 

which kinds of values we choose for the identity and noise transitions? To answer these 

questions, we compare the traditional representation of conservatism on the x-y plane 

(Figure 3) with the channel logic (Figure 4). If the identity transitions of Figure 4 would 

carry all the weight, p(male|male) = p(female|female) = α = 1, the resulting estimates would 

be located along the dashed diagonal 45° line in Figure 3a (which implies that slopeE=1). 

Deviations would exclusively depend on the variance and the sample size of the objective 

evidence and the sampling from memory, while deviations would cancel each other out over 

large numbers (see also Fiedler, 1996). If the identity transition and the crossover noise 

transition had the same weight, so that α = 1 – α = 0.5, input evidence and output estimate 

would be independent, and the resulting regression line would have slopeE = 0. In this case, 

the specific input value of the evidence E does not tell us anything about the specific output 

value of the estimate Ê.  In information theoretic terms we would say that there is no 

“mutual information” between evidence and estimate: the channel does not transmit 

information and is at its highest state of uncertainty (maximum entropy).5 If all weight were 

placed on the crossover noise transitions, p(female|male) = p(male|female) = 1 – α = 1, a 

given input would be perfectly transformed into its opposite: we would consider that all 
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males are females and vice versa. This transformation would suggest that the human mind 

is a system that perfectly confuses things. In terms of the traditional representation of 

Figure 3, this would imply slopeE = -1 (see Figure 5).  

 

Figure 5: Possible outcomes of the binary symmetric channel  

 

Source: Author.  

 

This work shows that the binary symmetric channel will produce estimates that lie 

inside all (light and dark) grey areas in Figure 5 simply by being symmetric. Typical 

empirical findings do not show estimates inside the light grey areas but rather in the darker 

ones. We have defined conservatism with equation (I) as 0 ≤ slopeE|c ≤ 1 (corresponding to 

the dark areas in Figure 5), or the conditioned version of equation (II), 0 ≤ [r x σP(Ê|c)] ≤ 

σP(E|c), with c being some overall conditioning event for the task (compare our formal 

definition of the Bayesian likelihood bias in Table 1). Thus, there is a positive correlation 

between objective evidence and subjective estimate, not a negative one: the smaller of both 

inputs stays smaller, and the larger one stays larger. This condition is satisfied only if the 

identity transition is larger than the crossover noise transition, with 0.5 ≤ α ≤ 1: on average 

we are more right than wrong.  

From a psychological perspective, it seems reasonable and intuitive to assume that 

the identity transition is larger than the noise transition. If this were not the case, we would 

on average classify men as women and vice versa. Our predictions and expectations would 

persistently be in contradiction with reality, and we could not make much sense of the 

world around us.  This does not seem to be the case. We can therefore model the 

conservatism bias for binary decision-making tasks with a binary symmetric channel in 
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which the identity transition is larger than the crossover noise. We thus end up with the 

following two properties of our binary channel: 

Property Ni: (More right than wrong). The identity transition probability is larger 

than or equal to each of the noise transition probabilities: p(êi|ei) ≥ p(êx|ei), for all x ≠ i.  

Property B: (Binary symmetric). The channel is a binary symmetric channel: 

p(ê1|e1) = p(ê2|e2).  

Linking Property Ni to psychological processes implies that evolution has provided 

us with an information processing design in which the correct connection weighs more than 

any wrong connection: the way we are “wired” makes sense. We might systematically fail in 

the case of specific tasks (such as trick questions and illusions), and patients with cognitive 

dysfunctions might persistently confuse inputs, but these seem to be the exceptions rather 

than the norm. In general, evolution has endowed us with an impressively accurate and 

remarkably well tuned information processing system. 

Property B states that both input evidences are affected by noise with the same 

intensity. This property also seems plausible psychologically, especially if one considers 

that in well-defined binary decision-making tasks there is actually only one event, with the 

“other event” serving as its complement (not-the-event, or “everything else”). Property B 

supposes that both are distorted equally. Property B is also backed up empirically. For 

example, DuCharme (1970) reports no bias for estimates about similarly sized men and 

women (both between 167.1-163.3cm, for which 51% are men and 49% are women). This 

result (50%-50% in, and 50%-50% out) is characteristic for a binary symmetric channel 

(Cover and Thomas, 2006: Ch. 7; Massey, 1998: Ch4), which confirms our choice of model. 

 

 Conservatism: The Case of Equidistant Interval Estimates 

The first example focused on a binary decision-making exercise that estimated the 

likelihood of an event, p(ei). Empirical studies show that we are also conservative in our 

estimates of the value of a non-normalized numerical variable itself, ei, even if we have more 

than two choices. In this case we will refer to an exercise that, unlike the Bayesian 

likelihood bias, does not depend on previous conditioning. So instead of asking “given A, 

what is B?” we simply ask “what is B?”. As will be seen, the same conservative logic applies 

even without existence of a conditioning variable.  

In an experiment with a very reliable sample size, Hockley (1984) analyzed 47,120 

judgments on the repetitions of listed words (Experiment 1, p.230). The presented words 

were repeated up to three times. The incoming probability distribution was close to 

uniform (which makes the math easier, but is not required in our setup). The subjects 

tended to overestimate the number of repetitions for low numbers (the mean estimation for 

1st repetitions was 1.03) and underestimate the number of repetitions for high numbers 

(the mean estimation for 3rd repetition was 2.72). Figure 6a shows the finding in its 
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traditional presentation, which reveals conservatism in agreement with our definition 

(equation I).  

Hintzman (1988) simulated Hockley’s findings with the computer program 

MINERVA2. Given that MINERVA basically follows the logic of a noisy memory channel (see 

Appendix B), we should be able to analyze it with our information-theoretic tools. Figure 6b 

shows the same result as Figure 6a, but this time in the representational form of the noisy 

memory channel.6 The Figure cites the values of Hockley’s Table 1 (1984: p.230), which 

shows the noise P(Ê|E) of the channel. Subjects tended to include “false friends” in their 

estimates. When a word was presented for the 3rd time (e3), people identified it as a third 

repetition only 74.2% of the times: 23.4% of the time they estimated it to be a 2nd repetition, 

and 2.4% of the times they thought the word appeared for the 1st time. On the basis of these 

results, we can calculate the expected value of the estimate Ê given a 3rd repetition e3: 

Expected value of the estimate Ê, given a 3
rd

 repetition e3 =  

= [0.024
x
1 + 0.234

x
2 + 0.742

x
3] = 2.72 = [p(ê1|e3)

x
 ê1 + p(ê2|e3)

x
 ê2 + p(ê3|e3)

x
 ê3] 

 

 

Figure 6: Conservatism: (a) traditional representation; and (b) memory channel representation 

   

Source: Author, based on Hockley (1984). 

 

We can now use all existing theorems and rules of probability to analyze additional 

properties of the channel.3 For example, using the total probability theorem we can 

calculate the probability of each estimate, P(Ê) (how probable is it that subjects estimated a 

1st repetition). Through Bayes’ theorem we can calculate the equivocations, P(E|Ê) (given a 

specific estimate, what is the probability that a specific objective input evidence was 

presented?).7   
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In this sense, conservatism can be understood as the fact that “false friends” sneak 

into our estimates, due to noise in the memory channel, which confirms the notion of noise 

as mixing. Hockley (1984: p237) performed the same experiment with up to 5 word 

repetitions (sample size: 45,760), which led to a similar conservative result (see Table 3).  

 

Channel Properties for Equidistant Decision-making Tasks 

Hockley’s exercise is not binary but ternary. Therefore, our property B does not 

apply. We could demand that the ternary channel be symmetric, i.e. that all three evidences 

are affected by the same kind of noise. However, this is not in agreement with Hockely’s 

(1984) findings. For example, whereas 1st and 2nd as well as 3rd and 2nd repetitions are 

equally distant from each other (1∆ apart), it is much more probable to confuse a 2nd and a 

3rd repetition, with p(ê2|e3)= 23.4 %, than a 2nd and a 1st repetition, p(ê2|e1)= 2.5 % (see 

Figure 6b). This result suggests, plausibly enough, that it is easier for people to recognize 

when a word appears for the 1st time than when it appears for a 2nd or 3rd time. The 

technical conclusion is that different inputs seem to be affected by noise of different 

intensities. We therefore relax our requirements and basically demand that judges “confuse 

equally different things, equally likely”:  

Property S: (identity-symmetric noise). Noise is symmetric around the identity 

transition for all defined values ei±j: p(êi-j|ei) = p(êi+j|ei). 

This property is in agreement with Hockley’s empirical findings. Being presented 

with a word for the 2nd time, it is as probable that people erroneously think that the word 

appears for the 1st or a 3rd time: p(ê1|e2)= p(ê3|e2)= 7.3 %. It is important to note that not all 

empirical findings reconfirm this property (e.g., Hockley’s five word repetition exercise 

deviates slightly; compare also with Table 3). Nevertheless, I will stick to the simplified 

assumption of identity-symmetric noise for modeling purposes. 

For this kind of decision-making exercise that draws from a equidistant interval 

scale (such as 1, 2, 3, etc. all 1∆ apart), it turns out that satisfying Property S is enough to 

fulfill the right side of the double inequality in our definition (I) for conservatism (for a 

formal proof, see Appendixes C and E). For ternary input, satisfying Property S is also 

enough to fulfill the left side of definition (I). The left side of our conservatism definition 

(equation I), however, is not assured for decision-making exercises on an equidistant scale 

with more than three inputs. These distributions have to be quite particular, but they do 

exist.8  I therefore return to the psychologically pleasing Property Ni and extend it to the 

multiary case. I continue to demand that our estimates are on average “more right than 

wrong” and additionally postulate that we are more likely to confuse “more similar things” 

than we are “less similar ones”:  

Property N: (single-peaked unimodal noise). The transition probabilities get smaller 

the larger the distance between a noisy estimate and the identity estimate: p(êx|ei) ≥ 

p(êz|ei), for all │x-i│ ≤ │z-i│.  
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Because the case x = i defines the weight of the identity transition (which by the 

definition of Property N is the largest transition), Property N subsumes Property Ni, which 

thus becomes redundant.9  

Hockely’s (1984) empirical findings also confirm Property N. For example, he 

detected that identity transitions are most likely and that it is more probable to confuse a 1st 

and a 2nd repetition (which are more similar, p(ê2|e1)= 2.5 %), than a 1st with a 3rd (which 

are more distinct, p(ê3|e1)= 0.4 %) (see Figure 6b; similar for his quinary five word 

repetition exercise, see Table 3).  

Property N states that we are more likely to confuse something with “something 

similar” than with something “less similar” (more or less similarity between x and z in the 

formulation of Property N). This raises the question of what defines “similar” and 

“dissimilar”. This question is trickier to answer for nominal categorical or ordinal variables 

(such as the estimation of a color, etc.). It is quite straightforward to the presented case of 

word repetitions, since 1, 2, 3, 4 etc. consist of an equidistant interval scale. 3 is more 

different from 1 than 2. The proof in Appendix C shows that the combination of Properties S 

and N produces conservatism for all decision-making exercises that focus on evidence taken 

from an equidistant interval scale (more formally, for which: êi = êo + i∆, for some constant ∆ 

with i = {0, 1, 2, 3 … n}). The objects are equidistant because each of them is an equal 

distance ∆ apart from its next valid neighbor (e.g. 1, 2, 3…; or 10 %, 20 %, 30 %...).10 The 

importance of the requirement for an equidistant scale might not be clear at this point, but 

the details of the proof in Appendix C shows that this is an important requirement to assure 

that Property N produces conservatism. 

With this in mind, we now know that Properties S and N define a channel that must 

produce conservatism for estimates drawn from an equidistant interval scale. The “turning 

point” between over- and underestimation is defined half way between both extremes, the 

midrange point m = [e0+en]/2 (see Figure 3b). For values with equal weights, the midrange 

point is equal to the mean when all values on the equidistant interval scale are applicable: 

∑i=0 ei /[n+1] = m = [e0+en]/2.11 For example, for Hockely’s (1984) ternary exercise: 

[1+2+3]/[2+1] =  1+([3-1]/2) = 2 (compare Figure 6a). 

This argument shows that we can use the same underlying logic to explain the 

existence of two biases traditionally treated separately in the literature: conservatism and 

Bayesian likelihood. It turns out that we can use the same logic to explain additional biases.  

 

 Illusory Correlation of Minority Stereotyping 

Illusory correlation is a bias in which one’s judgments are based on a relation one 

expects to see even when no such relationship exists. One socially very relevant and delicate 

case of illusionary correlation is that decision-makers form false associations between 

people with rare (typically negative) behaviors and membership in statistical minority 

groups (Hamilton, Dugan, & Trolier, 1985;Hamilton & Gifford, 1976; Jones et al., 1977; 
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Mullen & Johnson, 1990 Pryor; 1986; Spears, van der Pligt, & Eiser, 1985,1986;for its role in 

stereotyping and discrimination see Bar-Tal, Graumann, Kruglanski, &Stroebe, 1989). The 

typical empirical setup (based on Hamilton & Gifford, 1976) assumes a 2 by 2 matrix of 

subjects, distinguishing between majority and minority groups and between positive and 

negative behavior (Table 2). Studies indicate that the smallest group is overestimated and 

that the largest group is underestimated. Because the minority is part of the smaller group 

(by definition), the result is in an exaggerated impression of the behavior of the minority, 

which students of this phenomena have interpreted as stereotyping, discrimination, or a 

illusionary correlation between group membership and behavior.  

Most studies conclude that this bias is produced by the availability heuristic 

(Tversky & Kahneman, 1973; 1974), claiming that decision-makers are good at recognizing 

distinctive minority behavior. However, both Fiedler (1991) and Smith (1991) have shown 

that there is a simpler explanation for this bias: statistical base rates alone may lead to 

discrimination against minorities. Smith (1991) simulated this bias with the help of 

MINERVA (Hintzman, 1984; 1988), which does not include any mechanism of availability 

that fosters the distinctiveness of any group (see Appendix B). We will follow this idea and 

show that simple noise can produce the bias without the need for a more sophisticated 

availability heuristic. 

Table 2 shows the traditional set up, with the numbers representing the size of the 

groups. The underlined numbers show the objective evidence ei, the arrow in brackets the 

tendency of the judgment [underestimation ▼; or overestimation ▲], and the subsequent 

number the obtained subjective estimate êi. Note that the distribution of evidence is 

independent among the 2 by 2 matrix (relationship 18/9 = 8/4; and 18/8 = 9/4)—there 

exists no relation between group membership and behavior. Hamilton and Gifford (1976) 

did two experiments. In Experiment 1 they assumed a prevalence of positive traits for both 

the majority and minority (in agreement with Kanouse & Hansen, 1972). In Experiment 2 

they assumed a prevalence of negative behavior. In both experiments, they asked two 

questions, one about group membership, given the trait (read the left two columns of Table 

3 from left to right: given the trait as input, which of the two outputs: majority or 

minority?), and one about traits, given group membership (read the right two columns of 

Table 3 from top down: given the group’s size as input, which of the two outputs: positive or 

negative trait?).  

As shown by the triangle arrows in Table 2, the direction of the question (i.e., the 

conditioning on group membership or trait) seems to influence the bias. In both 

Experiments 1 and 2, when asked about group membership, subjects underestimated the 

majority and overestimated the minority. When asked about traits, subjects underestimated 

the larger group and overestimated the smaller group. It is striking that these findings 

appear in both Experiment 1 and 2. In other words, it does not seem to matter whether the 

traits are positive or negative. Rather than being an indication of discrimination and 
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stereotyping, one can interpret this finding purely in terms of group size and base rates 

(compare with Fiedler, 1991; Smith, 1991).  

 

 

Table 2: Empirical findings of illusory correlation of minority stereotyping: evidence ei, [tendency: 

underestimation ▼; or overestimation ▲], and estimate êi. 

(Experiment 1) More positive than negative traits  

 Majority or minority?  Positive or negative? 

 Majority Minority  Majority Minority 

Positive 18 [▼] 17.5 9 [▲] 9.5 Positive 18 [▼] 17.1 9 [▼] 7.3 

Negative 8 [▼] 5.8 4 [▲] 6.2 Negative 8 [▲] 8.9 4 [▲] 5.7 

(Experiment 2) More negative than positive traits  

 Majority or minority?  Positive or negative? 

 Majority Minority  Majority Minority 

Positive 8 [▼] 5.9 4 [▲] 6.1 Positive 8 [▲] 8.2 4 [▲] 6.6 

Negative 16 [▼] 15.7 8 [▲] 8.3 Negative 16 [▼] 15.8 8 [▼] 5.4 

Source: Hamilton and Gifford (1976). 

 

This bias can be therefore be explained with the same noise-based generative 

mechanism as the conservative Bayesian likelihood bias. The conditioning variable in this 

case is the cross-tabulating second group of attributes. Formally, 0 ≤ [r x σÊ|c] ≤ σE|c, and 0 ≤ 

[r x σ P(Ê|c)] ≤ σP(E|c) for likelihood estimates, or 0 ≤ [r x σ P(Ê|c)] ≤ σP(E|c) for non-normalized 

numerical estimates, with c being a cross-tabulated event (see Table 1). In the case of a 

binary exercise (choice between two classes) we have shown that Properties B and Ni 

produce this result. In a decision-making exercise that would estimate the likelihood (or 

frequency) of more than two choices (e.g., positive, neutral, negative, and horrible 

behavior), we have shown that the related Properties S and N define the kind of noise that 

produces this empirical finding.  

 

 Self-other Placement 

Another seemingly unrelated bias can be explained by assuming the very same 

mechanism of conservative noise (Ê|E) between evidence E and estimate Ê. The placement-

effect is often simply called “overplacement,” sometimes known as the “better-than-

average” and “worse-than-average” effect. It is based on the empirical finding that we tend 

to believe ourselves to be better than others at tasks at which we rate ourselves above 

average (Kruger and Dunning, 1999), and tend to believe ourselves to be worse than others 
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at tasks at which we rate ourselves below average (Kruger, 1999). What should this bias 

have to do with the previously analyzed logic of conservatism? 

One potential explanation is based on the assumption that we have better 

information about ourselves than about others (Sande, Goethals, & Radloff, 1988). In a 

convincing presentation, Moore and Cain (2007) and Moore and Healy (2008) have shown 

that this effect can be traced back to the fact that  

“people often have imperfect information about their own performance, 

abilities, or chance of success. However, they have even worse information about 

[the performance] of others. As a result, people’s estimates of themselves are 

regressive [conservative], and their estimates of others are even more regressive 

[conservative]. Consequently, when performance is high, people will 

underestimate their own performances, underestimate others even more so, and 

thus believe that they are better than others. When performance is low, people 

will overestimate themselves, overestimate others even more so, and thus 

believe that they are worse than others” (Moore & Healy, 2008: p.503) 

Figure 7 illustrates the placement effect in a way similar to the traditional 

representation of conservatism. The example presents 11 equidistant test scores from the 

worst score K to the best score A (for example score K=0, J=1, I=2, … B=9, A=10). Therefore, 

the example is based on an 11-ary decision-making exercise that results in conservatism 

and can be modeled with the help of a noisy memory channel that satisfies Properties S and 

N.  

 

Figure 7: Self-Other-Placement  
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Source: based on Moore and Healy (2008: p.504)  

 

With no other evidence, and with total uncertainty, the guess with the greatest 

chance of success would be to estimate that everybody receives a midrange score of X (see 

also the principle of maximum entropy, Jaynes, 1957a, 1957b). Upon taking the test, we 

receive some evidence about our performance (we have a “feeling about how it went”); 

thus, our uncertainty is no longer at the maximum. This evidence tells us that we are below, 

above, or near the score that we had initially expected. If our estimate of this score were 

perfect, our estimation would be placed somewhere on the diagonal 45° line; it would be in 

agreement with reality. But our estimates are noisy. When reasoning about our own 

performance, we mix the evidence of our score with the initially expected score X, the only 

two pieces of evidence we have. The result is a binary choice between the prior and the 

updated evidence, which results in conservatism (solid black line in Figure 7).  

When we estimate the scores of others at the same time, we use the same two 

sources. In this case, however, the evidence of our personal score is much less influential. 

The initially expected score X continues to weigh more heavily in our estimates of the 

performance of others. According to Moore and Healy (2008), if we perform better than 

expected (above X), we feel that the test was easier than we expected, and will readjust our 

estimates about others’ performance upward. The argument goes the other way around if 

we perform below our initially expected score. Given, however, that our new evidence is 

based exclusively on our own performance, it influences the readjustment of our estimates 

of own performance more than the readjustment of the estimates of others’ performances. 

This implies that our estimates of the scores of others are even more conservative (more 

influenced by the previous expectation) than our estimates of our own performace (more 

influenced by the new evidence received after giving the test), and the resulting line has a 

stronger inclination toward the horizontal line (double solid line in Figure 7). Formally, 0 ≤ 

slopeE others ≤ slopeE own ≤ 1 (see Table 1). Reformulating Moore’s and Healy’s (2008) logic, 

we can say that our estimates about our own performance are less noisy (more accurate) 

than our estimates about the performance of others (more formally, our estimates of others’ 

performance have higher “entropy”, see Cover & Thomas, 2006,  Ch. 2Massey, 1998, Ch. 1). 

This finding is intuitively pleasing, as it simply restates that we know more about ourselves 

than about others. As illustrated by Figure 7, this leads to the well-known 

over/underplacement effect.  

 

 Subadditivity 

The conservative noisy memory channel can provide a possible explanation for yet a 

fifth seemingly unrelated bias.  The “subadditivity effect” refers to the empirical finding that 

an estimate of a likelihood is normally smaller than the sum of the estimates of each of its 

(more than two) mutually exclusive components (Fox & Levav, 2000;Tversky & Koehler, 
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1994;). Fiedler (1991, his Demonstration 3) shows that something similar holds for non-

normalized absolute value frequency estimates: the summed estimates of two component 

estimates are higher than the compound frequency. Bearden and Wallsten (2004) have 

shown that the subadditivity effect can be computationally simulated with MINERVA-DM 

(see Appendix B) and Fiedler, Unkelbach, and Freytag (2009) have provided an additional 

and seemingly independent interpretation of subadditivity produced by an imperfect 

(noisy) transformation from evidence to estimate.  

Formally, I describe the subadditivity bias as p(êi) ≤ Ʃ p(êd), with d being a 

decomposition of event i (see Table 1). For example, Redelmeier, Koehler, Liberman, & 

Tversky (1995) asked physicians to provide probabilities for the likelihood of four exclusive 

and exhaustive survival chances of patients: dies during hospitalization, dies within a year 

after release, lives between 1-10 years, lives more than 10 years. Subjects were confronted 

with each of those alternatives, making four separate judgments. The sum of the likelihood 

estimates should add up to 100 %, but was instead equal to 164 % (Redelmeier et al., 1995). 

The decomposed estimate is therefore said to be subadditive with 100/164 = 0.61. In a 

similar exercise, Witteman, Renooij, and Koele (2007) detected that the subadditivity effect 

increases with the level of unpacking: the decomposition into three alternatives led to a sum 

of 120 % on average, while the decomposition into six alternatives led to a sum of 180 % on 

average (see also Fiedler et al., 2009). Additionally, Fiedler et al. showed that the degree of 

subadditivity depends on the extremity of the input evidence.  

Following the logic outlined in our discussion of the Bayesian likelihood bias (see 

Figure 4), the judge makes a series of binary choices on one single event: the scenario in 

question and its complement, which encompasses all other possibilities. For binary choices, 

the turning point between under- and overestimation is expected to be at ∑i=1 p(ei)/n = 1/n 

= ½. Dividing the general event into multiple smaller parts, must leave more choices below 

this mark than above. In other words: most of the decomposed subevents can be expected 

to have a probability less than 50 %. Following the logic of Figure 3, all estimates with 

likelihood values p(event) < 0.5 will result in overestimates. The sum of a series of 

overestimated components is of course larger than the total. 

This model can also explain the effect of the level of unpacking on subadditivity, 

because the overestimation of a very small input will be larger when mixed with very high 

input, given the same level of noise. Property N (single-peaked unimodal noise) tells us that 

increasing similarity between events (moving them “closer together” on a one-dimensional 

scale), while keeping noise constant, should increase the subadditivity effect, which is in 

agreement with Tversky and Koehler (1994, see also the argument in Bearden & Wallsten, 

2004). Our model also predicts that increasing noise should increase the effect, as more of 

the large complement is mixed into the estimation of the small subevent. This formulation is 

in agreement with the empirical findings by Bearden and Wallsten (2004) and Fiedler and 

Armbruster (1994).   
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The noisy memory channel model also affords us a possible explanation for another 

interesting finding that Tversky and Koehler (1994) outlined in their related support 

theory:  “judged probabilities are complementary in the binary case and subadditive in the 

general case.” (p. 547) . Soliciting estimations for both events of a binary choice (e.g., 

survives or dies), a symmetric binary channel will overestimate the lower value, p(event) < 

0.5 but will also underestimate the higher value, p(event) > 0.5. The sum of an equally 

overestimated and underestimated value stays equal, which explains why no subadditivity 

effect is detected in the binary case (see also Redelmeier et.al., 1995). This conclusion 

suggests that conservative noise between the objective evidence and the subjective estimate 

is sufficient to produce this finding, without the explicit need for any additional heuristic. In 

the words of Fiedler et al. (2009, p. 383): “Although other factors may contribute to 

subadditivity, their influence needs to exceed the baseline expected from the [conservative] 

regression model alone”. 

 

 

Noise (E|Ê) between Êstimate and Evidence: Exaggerated 

Expectation  

Until now I have analyzed the overall channel between evidence E and estimate Ê 

conditioned on the evidence (Ê|E). Bayes’ theorem allows us to also look at the channel 

from the side of the estimates, (E|Ê). In a much-cited article, Erev et.al. (1994) observed that 

this way of conditioning results in a bias similar to conservatism, but looked at the other 

way around: not from the evidence to the estimate, but from the estimate to the evidence. 

The bias can be detected with the same data set as the conservatism bias. The key to 

understanding the difference between them lies in the conditioning variable. Erev et.al. 

simulated the introduced errors with normally distributed noise and were able to replicate 

both phenomena simultaneously.  

In mathematical terms, the bias implies that the variance of the evidence (E) is 

smaller than the variance of the estimate (Ê). Turning equation (II) from above around, this 

implies that σP(Ê) ≥ [r x σP(E)]. In order to be able to clearly distinguish this bias from others 

(and because terms like “confidence” and “conservatism” are often used very loosely in the 

literature), we will refer to this bias as the “exaggerated expectation” bias, simply to give it a 

name (compare with Table 1). It is the same as the conservatism bias when the memory 

channel is looked at not from the side of evidence to the estimate (noise), but from estimate 

to evidence (equivocation).  

The exaggerated expectation effect says that given a high subjective estimate, the 

mean objective value is not high enough, and given a low subjective estimate, the mean 

objective value is higher than the estimate. This means, for example, that in empirical 

findings that state that of all times in which we expect high-frequency events, p(êi) > 0.5, 

events are on average less frequent than we would expect, (E[P(E)|p(êi)] < p(êi)—and vice 



TOWARD A SYNTHESIS OF COGNITIVE BIASES…   Oct.2011                            30 
 

 

versa for low expectations. It also means that given the expectation of a low 

return/grade/score, on average we receive higher returns/grades/scores than expected.  

The opposite is true for high expectations.  

Exaggerated expectation occurs when the equivocation side of the noisy memory 

channel, P(E|Ê), is governed by properties similar to those governing its noise-side, P(Ê|E). 

Conditioned on êi, instead of on ei, Property Ni (more right than wrong) would claim that the 

identity detection p(ei|êi) is larger than any of the equivocations p(ei|êx), for all x ≠ i. In 

other words, a specific estimate tells us more about the reality than about any other wrong 

evidence. The same conditional inverse can be applied for Properties S and N and the 

respective proof in Appendix C. This results from the fact that the regression line based on 

the estimate Ê (the y-axis of the traditional form of representation) has a slope of: 1 ≤ 

slopeÊ.  Remember that each correlation has two regression lines: one conditioned on the a-

axis (which is the most commonly used, such as in the confidence-bias), and another one 

conditioned on the y-axis (see Freedman, et.al. 2007: p.174; Furby, 1973). Thus, the 

exaggerated expectation bias is clearly distinct from conservatism or the confidence bias, 

because it supposes noise from the estimate to the evidence, not the other way around. 

 

 

Noise in the Retrieval Sub-channel 

Until now I have worked with the overall noisy memory channel (see Figure 2), 

which treats the noisy storage and retrieval sub-channels as one single process. I now open 

up this black box (see Figure 3) to investigate a group of biases based explicitly on the 

judge’s memory and the retrieval sub-channels.  

 

Noise (Ê|M) between Memory and Êstimate: the Confidence Bias 

The confidence bias originates in the internal uncertainty of the judge, rather than 

environmental uncertainty regarding the objective evidence (like conservatism or the 

exaggerated expectation bias). It refers to subjective uncertainty about the objective facts 

(see Wagenaar & Keren, 1985). More specifically, the confidence bias is the experimentally 

confirmed fact that we tend to be overconfident in our judgments when we are fairly certain 

about something, and underconfident when we have a high level of subjective uncertainty 

(for discussions see Keren, 1997; Liberman & Tversky, 1993; McClelland and Bolger). For 

example, in cases where people are fairly certain that their answer is correct (let’s say 80% 

certainty), it usually turns out that fewer than 80% of all answers that they judge to be 

correct are indeed correct (perhaps only 70%). In contrast, in cases where judges are only 

25% sure about the correctness of the answer, more than 25% (perhaps 40%) of those 

answers are actually correct. (See the traditional representation in Figure 8a, based on 

Adams & Adams, 1960.)  
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 Fitting empirical findings to the noisy retrieval sub-channel.   

The traditional set-up of confidence tasks involves asking general knowledge questions, 

such as, “Absinthe is (a) a liqueur or (b) a precious stone?”12  The judges are asked to give 

two responses. First, they are asked to choose one of the two alternatives as their best guess 

at the correct response. Second, they are asked to indicate their confidence in their 

estimate. This confidence rating is usually solicited on a scale from 0%-100%. 

(Unfortunately, it is often also solicited on a rather distorting scale from 50%-100% for 

binary decision-making tasks, which leads to distorted results.13) Figure 8a shows the 

empirical findings from a classic study of the confidence bias (Adams & Adams, 1960). Here, 

people were asked how confident they were that the spelling of a word was correct, after 

reading and writing the potentially misspelled word. Perfect judgment would imply that our 

confidence judgments would line up on the diagonal 45° line with the proportion correct of 

our estimates (the “hit-rate”).  

 

Figure 8: Confidence bias, (a) traditional representation; (b) looking into memory; (c) memory 

channel representation of a general knowledge task. 

   

 

Source: Author, based on (a) Adams and Adams (1960); (b, c) Lichtenstein and Fischhoff (1977). 
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How can we model the confidence bias with the tools of our noisy memory channel? 

I enter the memory channel from the side of our estimates, P(Ê). The equivocation P(M|êi) 

represents the level of confidence the judge has when “looking into his or her own 

memory.” The judge asks, “given that my estimate is p(êi), what is the probability that the 

original evidence is p(ei)? How confident am I about my judgment?” During a decision task 

our memory separates us from the original evidence (that is, P(E) and P(Ê) are conditionally 

independent given P(M), meaning that the memory channel is a Markov chain),  thus, a 

judge has to base his or her confidence estimate on P(M|êi): “given that my estimate is p(êi), 

what do I find in my memory P(M) to support this claim?” In short, the equivocation P(M|êi) 

represents the confidence that a judge has in his or her own judgment. When reporting 

confidence, the judge reports on the distribution of what is found in memory. 

After collecting over 9000 responses to binary general knowledge questions, 

Lichtenstein and Fischhoff (1977) reported in their much-citied study that respondents had, 

on average, 72.7% confidence in their judgments. Figure 8b represents this finding in the 

form of the retrieval channel. As a judge, one first chooses what she or he believes to be the 

correct option.  The participant then “looks into her/his own memory” for an estimate of the 

support her/his memory provides for the choice p(M|êi). The average person found that the 

content of his or her memory supported this estimate to 72.7%, with 27.3% of memories 

supporting other estimates. Again, for our purposes, it does not matter whether these 

probabilities are the result of “episodic multi-trace memory” (see Baddeley et. al., 2009, 

Ch.5), a “semantic memory” (see Baddeley et.al., 2009, Ch.6), or a mix of both. We can 

imagine that 727 out of 1000 relevant episodic memory traces end up with this result, or we 

can assume that the average person learned or “believes in” 7 (or so) reasons in favor, and 

roughly three reasons that speak against this. 

Having an idea about the content of the judge’s memory has two implications. First, 

we can estimate the storage channel. Because we are concerned only with general 

knowledge questions, we can assume that there is no uncertainty involved in the original 

evidence P(E). Absinthe is a liqueur, no doubt about it. Many questions, of course, do 

contain an innate uncertainty: questions about the future, for example (will it rain 

tomorrow?), or questions about uncertain aspects of the past (did the island of Atlantis 

really exist?). Furthermore, even with general knowledge questions without uncertainty, we 

do not know if our subject has been confronted with evidence suggesting that absinthe is a 

stone (if, for example, somebody lied to our judge or provided manipulated evidence). In 

this article, we do not consider the problematic of wrong input evidence, such as lies and 

deceptions, because false input does not make us irrational. We would still act completely 

rational, based on false premises. Therefore, we consider only general knowledge question 

that are not manipulated by misinformation and do not contain innate uncertainty. Given 

this assumption, we know that the difference between P(E) and P(M) must be attributed 

exclusively to noise in the storage channel, as shown in the graph of Figure 8c.  
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In addition to P(E) and P(M), we also have empirical evidence for the distribution of 

our estimate, P(Ê). Lichtenstein and Fischhoff (1977) found that only 63.6% of the answers 

by subjects in their study were correct. Comparing 72.7% with 63.6% gives us the typical 

result of overconfidence. Finally, with P(M) and P(Ê) we can approximate the noise in the 

retrieval channel, P(Ê|M). Assuming Property B (binary symmetric) for binary decision-

making exercises, we suppose that a judge is equally likely to confuse memories about 

absinthe being a liqueur with absinthe being a stone.  The weights of 0.2 crossover 

probability and 0.8 identity transitions happen to fit this empirical finding, following the 

total probability theorem with a binary symmetric channel: 0.636 = [0.727*p(ê1|m1)] + 

[0.273*p(ê1|m2)], with p(ê1|m2) = [1 - p(ê1|m1)] (because binary symmetric), and solving for 

p(ê1|m1)=0.8. The resulting picture of the entire memory channel is given in Figure 8c.  

 

 Formalizing the confidence bias.    

Similar to our formal definitions of conservatism, I can also provide a precise mathematical 

definition of the confidence bias. On a traditional x/y-axis plane I can depict the level of 

confidence on the x-axis and the proportion correct (hit-rate) on the y-axis (see Figure 8a). 

Empirical evidence typically shows that the slope of the regression line based on the x-axis 

is between 0 and 1. As I have shown, the level of confidence can be understood as the 

distribution of evidence in the judge’s memory, P(M). This gives us the following formal 

definition of conservatism:  

0 ≤ slopeP(M) of regression between P(M) and P(Ê), based on P(M) ≤ 1.  

As before, this inequality can be reformulated. The slopeP(M) depends on the 

regression coefficient r, and the standard deviations of P(M) (σP(M)) and P(Ê) (σP(Ê)): 

 0 ≤ slopeP(M) ≤ 1    (IV) 

0 ≤ [r 
x
 σP(Ê)] / σP(M) ≤ 1 

0 ≤ [r 
x
 σP(Ê)] ≤ σP(M)     (V) (compare with Table 1) 

Inequality (IV) illustrates how estimates turn out to be conservative in comparison 

to confidence levels. It is surely satisfied when the correlation between the estimate P(Ê) 

and the evidence P(M) is positive (r > 0), and the standard deviation of the subjective 

estimates P(Ê) is smaller (on average closer to its mean) than the standard deviation of the 

evidence in memory P(M), which is more “spread out” toward the extremes (further from 

its mean). In other words: estimates are “conservative” with respect to confidence levels 

derived from memory because such estimates’ extremes are less accentuated (closer to 

their means).  

The presented characteristic of the retrieval channel follows the same logic 

observed for conservatism in the overall memory channel from P(E) to P(Ê), discussed 

previously. When we detect high probabilities in our memories, it seems to be the case that 

noise mixes memories of lower likelihoods into our estimates. Likewise, when faced with a 
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question about which we have little evidence in memory, memories of higher likelihoods 

seem to sneak in. We apply the same Properties Ni, B, S and N to the retrieval channel, P(M) 

to P(Ê). Following the same logic as before, but replacing Ê|E with Ê|M, we can show that 

these properties lead to the confidence bias. Consider that in the typical case of the 

confidence bias, the standard exercise focuses on a very simple binary likelihood decision-

making task: how confident are you that the estimate is correct? Traditionally, empirical 

confidence bias studies therefore merely test for binary, not multiary decision-making 

tasks, and given the nature of the question (how confident are you?), they focus on 

assessing likelihoods (not absolute values). 

 

Noise (M|Ê) between Êstimate and Memory: the Hard-Easy Bias 

There is another bias that can be explained by modeling noise in the retrieval sub-

channel. Known as the hard-easy effect (e.g. Lichtenstein and Fischhoff, 1977; Lichtenstein, 

Fischhoff, and Phillips, 1982; Keren, 1988; Suantak, Bolger and Ferrell, 1996), it looks at the 

retrieval sub-channel the other way around, from estimate Ê to memory M. It states that 

based on a specific level of task difficulty, our confidence in judgments is too conservative. It 

is therefore the conditional inverse of the confidence bias. The hard easy bias has also been 

simulated by computer programs (Juslin, et.al., 2000; Merkle, 2009), and often leads to 

some confusion. Unlike the confidence bias, it is based not on the expected hit-rate values, 

conditioned on a specific confidence level, Expected value (EV) of [P(Ê)|p(mi)], but 

transformed by Bayes’ theorem, on the expected value of the confidence, conditioned on a 

specific hit-rate, EV[P(M)|p(êi)]. By the definition of what is hard and what it easy, hard 

tasks are defined as having low average hit-rates, while easy tasks have high ones. In 

general knowledge tasks without innate uncertainty (with p(ecorrect)=1), the distribution of 

the estimate, p(Ê), gives us the overall difficulty of the task.  

Traditionally, different exercises are executed for tasks with different levels of 

difficulty (hard and easy). Figure 9a schematizes the typical finding of the hard-easy bias. In 

contrast to the usual convention, Figure 9a leaves the x- and y-axis at the same order as we 

had in Figure 8a. Since the hard-easy bias looks at the respective average level of confidence 

for each task, given the task difficulty, this order requires us to read the graph from the left 

y-axis to the bottom x-axis, in contrast to the traditional reading of the bottom x-axis to the 

left y-axis (see arrows in Figure 9a). It turns out that for tasks with a low average hit-rate 

(hard: 0.2 hit rate in Figure 9a) the average level of confidence is higher than it should be 

(0.3 confidence in Figure 9a), and that for tasks with a high average hit-rate (easy: 0.8 hit 

rate), the average confidence is lower than it should be (0.7 confidence), or, more formally: 

EV[P(M)|p(ê0.2)] = 0.3; EV[P(M)|p(ê0.5)] = 0.5; EV[P(M)|p(ê0.80] = 0.7. In contrast to the 

previous exercise, where we conditioned Figure 8a on the level of confidence (“x-axis”), we 

now condition on the estimate “y-axis” and ask: given a certain level of hit-rate, what is the 

expected value of confidence in memory, EV[P(M)|p(êi)]?  
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Students of this phenomena often determine the relation between the average hit-

rate and the average confidence by subtracting the expected value of the hit-rate from the 

expected value of confidence, EV[P(M)]–EV[P(Ê)]. The result is then ranked according to the 

level of difficulty. This is just a more compressed way of achieving the same result. 

Figure 9: Hard-easy effect; (a) conditioning on proportions correct (y-axis); (b): confidence bias 

(conditioned on x-axis) and hard-easy effect (conditioned on y-axis) 

   

Source: Author. 

 

ollecting these averages for many diverse tasks (hard and easy), we can run a 

regression line through these averages, getting a regression with slopeP(Ê). The hard-easy 

effect claims that this regression line will typically be between 0 and 1 (see Juslin, Winman 

and Olsson, 2000; Merkle, 2009)14. We therefore define the hard-easy effect with:   

slopeP(Ê) ≥ 1    (VI) 

σP(Ê) / [r 
x
 σP(M)] ≥ 1 

 σP(Ê) ≥ [r 
x
 σP(M)]    (VII) (compare with Table 1) 

This definition suggests that the equivocation side of the retrieval channel, p(M|êi), 

seems to be governed by the same properties as the noise side of the channel, p(Ê|mi). 

Following the reversing logic suggested by Erev, et al. (1994), we simply have to exchange 

the conditioned and the conditioning variable. Applied to this end, Property S (identity-

symmetric noise) states that we are equally likely to confuse equally different memories. 

Property N (single-peaked unimodal noise) states that we can on average trust our judgment 

based on our memories: the largest part of our estimate comes from the correct memory. It 

also states that equivocation in our retrieval process becomes smaller the more dissimilar 

the equivocated memory is from the correct memory. From a psychological perspective, 

these properties are intuitively pleasing.  
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Discussion of Several Biases within one Theoretical Framework 

One of the main benefits of defining several biases within one common conceptual 

framework is the ability to show how they are related. For example, we are now in a 

position to explain both the confidence bias and the hard easy effect with one single 

theoretical framework. The key to understanding the difference between them lies in the 

conditioning variable (Erev, et.al., 1994). The micro-data that can give rise to both effects 

are schematized in Figure 9b, which presents what introductory statistics textbooks call a 

“football-shaped-cloud” (see Freedman, Pisani and Purves, 2007). Combining our definition 

of the confidence bias (equation V) and our definition of the hard-easy effect (equation VII) 

gives us the following results: 

0 ≤ [r 
x
 σP(Ê)] ≤ σP(M)          (V) 

=>1/r ≥ σP(Ê)/σP(M) ≥ 0         (Va) 

 σP(Ê) ≥ [r 
x
 σP(M)]         (VII) 

=> σP(Ê)/σP(M) ≥ r        (VIIa) 

Combining (Va) and (VIIa):  

 1/r ≥ σP(Ê)/σP(M) ≥ r ≥ 0       (VIIIa) 

or:  [Var(P(M)) / cov(P(M),P(Ê))] ≥ 1 ≥ [cov(P(M),P(Ê)) / Var(P(Ê))/] ≥ 0  (VIIIb) 

 

Equations (VIIIa) and (VIIb) describe a retrieval channel that leads to both the 

confidence bias and the hard-easy effect. The equations clearly show how the effects are 

related and define the co-dependence and trade-off that exist between the biases. The 

limitations between M and Ê arise as a result of applying Properties B and N for binary 

cases, or S and N for exercises from an equidistant interval scale. We see that the confidence 

bias and the hard easy effect are two sides of the same coin: the first one can be modeled 

with the noise of the retrieval channel (Ê|M), and the second one can be understood as a 

consequence of the properties of the equivocation of the retrieval channel (M|Ê). Both 

conditioned variables are related by Bayes’ theorem: P(Ê|M) = [P(M|Ê)* P(Ê)]/P(M).  

Following the logic outlined in equations (V) to (VIII), but replacing M with E and 

applying Properties B and N, or S and N, to the overall channel between objective evidence E 

and estimate Ê, it is straightforward to show that the overall channel is governed by the 

same limitations and trade-offs.  
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Possible Psychological Generative Mechanisms 

for Noise in Binary and Equidistant Decision-Making Tasks 

From a psychological perspective, Properties B, N, and S do not seem too farfetched. 

I would argue that they seem reasonable and their psychological interpretations, briefly 

sketched above, are intuitive. But what are the psychological mechanisms that could 

possibly generate noise of such nature? In this section I discuss some possible candidates.  

 

The Gaussian Channel 

Normal noise (following the “bell curve”) is a popular choice in many of the above-

mentioned “random error models” (e.g. Erev, et.al., 1994; Wallsten and González-Vallejo; 

1994). But why should the kind of noise that interferes with human decision-making be 

normally distributed? Why not binomial noise (such as suggested by Budescu, et.al., 

1997b)? Or maybe there is another form of interference into the process of human 

judgment (exponential, beta, gamma, Cauchy, Poisson, etc.)? Where, if the kind of noise that 

interferes with human decision-making is normally distributed, does the normally 

distributed noise come from?  

There are many possible sources of interference in the process from objective 

evidence to memory, and from memory to estimates. Though it may appear as a weakness 

of the current argument, this multiplicity of different effects that may lead to the cumulative 

effect of “mixing things” (noise) in fact supports the proposal of normally distributed noise, 

since the central limit theorem states that the cumulative effect of a large number of 

independent random effects will be approximately normally distributed. Thus, the fact that 

there are so many potential sources for noise, makes it in fact quite reasonable to assume 

that noise is normally distributed. The resulting Gaussian channel already serves as a 

successful model for some of the most common communication technology channels, such 

as wired and wireless telephone channels and satellite links (which also suffer from 

interference from a large number of independent causes). It is one of the most common 

channels studied in information theory and its properties are well understood (see Cover 

and Thomas, 2006, Ch.9).  

If normal noise of the same variance is applied, Properties B and Ni are satisfied. The 

Gaussian channel also satisfies Properties S and N, since the normal distribution is 

symmetric and single-peaked unimodal. It is worth noting that Properties S and N do not 

require each piece of evidence to be affected by normal noise with the same variance. Noise 

can affect different estimates differently, and the study of these differences can give us 

much insight into the inner workings of our irrationality.  

Figure 10a models Hockely’s (1984) ternary experiment with normal noise: [signal 

+ normally distributed noise around the identity transition] (compare with Figure 6). The 
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reader might see a similarity with the information theoretic logic applied to psychological 

Signal Detection Theory (Goldstein, 2002, Appendix A; Heeger, 1997; Swets, 1964; see also  

Wallsten & González-Vallejo, 1994). The vertical lines represent the criteria by which a 

judge classifies input evidence wrongly. Figure 6a represents the fact that 3rd word 

repetitions are most affected by noise: the normal curve around e3 has the largest variance.  

There are, however, limitations when fitting normal curves to empirical findings 

concerning decision-making tasks of more than two binary choices. With multiary choices it 

is not possible to fit all the curves perfectly to the empirical findings because each normal 

curve only has two degrees of freedom by which to adjust it to the data; its mean and 

variance. As the number of variables grows from ternary to quaternary exercises and 

beyond, this limit on the degrees of freedom makes it increasingly difficult to fit normal 

curves to all aspects of the empirical findings. The result is thus only a rough approximation, 

but it often works quite well for the replication of communication systems in electrical 

engineering. I discuss the fitting process further in Appendix D. 

 

Figure 10: (a) replication of Hockley’s (1984) ternary experiment with normal noise; (b) transition 

matrix P(Ê|E) for empirical finding of Hockley (1984) with indication of model deviations.  

  

Source: Author, in reference to empirical data from Hockley (1984). 

 

Figure 10b shows the fitting limitations in a transition matrix. In this solution I 

decided to limit this misfit to evidence 1 (1st repetition), but this is not binding. As the name 

indicates, such matrices focus on the transition probabilities P(Ê|E) and are often used to 

work with channels. These matrices represent the visual logic of channel graphs (like 

Figures 1, 2, 4, and 6b), but with the analytical benefit that the well-known tools of matrix 

algebra can be applied to analyze the given properties. Figure 10b corresponds to the 

traditional x/y-representation of Hockley’s (1984) ternary experiment in Figure 6a, the 

channel representation in Figure 6b, and the normal noise approximation in figure 10a. All 

four kinds of representation show the same finding in different ways.  
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Other Candidate Mechanisms 

Modeling noise with the normal distribution is quite popular and justifiable, not least 

because there is a justifiable generative mechanism: the central limit theorem. There might, 

however, be other mechanisms that generate noise satisfying Properties B, S, and N. It is 

beyond the scope of this article to dig much deeper into the search for further candidate 

mechanisms, but I will present one additional possibility.  

This possibility is to interpret the noisy memory channel as an evolving network. The 

analysis of complex networks has become a rich and quite sophisticated area of research 

over recent years (see, for example, Albert & Barbasi, 2002; Neuman, 2003; 2010). For 

purposes of illustration, I use a very simple case.  Suppose that the first presented evidence 

results in a correct identity transition and therefore creates a valid connection in the noisy 

memory channel. Suppose, too, that this connection is not stable and that over time the 

(initially correct) link starts to “wander” up and down the estimation scale Ê at random. A 

simple 50%-50% random walk up and down on a one-dimensional scale results in a 

distribution based on a binomial coefficient: P(k)= P(k)= 2-n (  
      ⁄

). Here, n is the number 

of steps taken, k the final position on the scale, and p(k) the probability of ending up at 

position k. Modeling noise according to this “random-walk” logic leads to an open-ended 

scale that satisfies Properties N and S. Thus, there are other potential generative 

mechanisms for the noise properties that we identified. Following the logic of complex 

networks, it is possible to come up with much more sophisticated models that could provide 

reasonable explanations why the noisy memory channel produces the selected biases.   

Besides the logic of Gaussian noise and random walk, there might be many other 

possible generative mechanisms that can create the properties that generate the kind of 

noise we are looking for.   

 

 

Additional Channel Properties 

For reasons of completeness, in this section I now discuss additional channel 

properties that also produce the identified biases. The first one is an alternative to Property 

N; the second one loosens the quite strict requirement of symmetric noise (Property S) and 

therefore applies to a much broader category of decision-making exercises involving 

multiary choices whose values are not equidistant (for example, instead of choosing from 

values 1, 2, 3, which are all 1∆ apart; choose from values 1, 7, 99, with 1 and 7 being 6∆ 

apart, and 7 and 99 being 92∆ apart). The third section discusses approximate channel 

properties, which do guarantee to produce the biases, but provide more flexibility for 

psychological interpretations. 
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A Property for Unbounded Noise Distributions 

Normal noise and open-ended random-walks are unbounded (from -∞ to +∞), which 

leads to the question of what to do with the “overshoot”. The “overshoot” refers to estimates 

outside of the defined scope of the decision-making exercise (such as illusions)4. In line with 

many empirical studies, Hockley (1984), for example, simply “truncates” or “cuts off” the 

overshooting estimates (p.230). He deletes 354 answers that referred to a (non-existent) 4th 

repetition in his ternary word repetition exercise. The same is done in the random-error 

model of Juslin et.al. (1997). This, however, seems to amount to simply denying that the 

mind creates such kind of illusions.  

Another alternative is to add the overshoot to the extremes, which seems 

psychologically reasonable: if it appears to a judge that some event occurred more times 

than allowed by the nature of the decision-making exercise, it is reasonable to expect that 

the judge would simply add this “overshoot” to the highest possible option. This leads to an 

additional property: 

Property U: (Adding overshoot of unbounded noise to extremes). In cases where noise 

is modeled through an unbounded distribution, add the transition probabilities of the 

overshoots to the extremes, ê0 and ên:  

p(êlow-extreme|ei) = p(ê0|ei) + p(êvalues<0|ei); and 

p(êhigh-extreme|ei) = p(ên|ei) + p(êvalues>n|ei). 

Note that the definition of Property S (identity-symmetric noise) assumes an 

unbounded scale from -∞ to +∞, depending on the nature of j. Therefore, Properties S and U 

can be applied to the noisy memory channel simultaneously. As I show in Appendix E, it 

turns out that Property U renders Property N (single-peaked unimodal noise) redundant. 

Properties S and U will also always lead to conservative noise. If we follow the 

psychologically justifiable procedure of adding the overshoot of unbounded noise to the 

respective extremes, it turns out that the noise distribution does not need to be unimodal 

single-peaked. The noise distribution might as well be W or U-shaped, as long as it is 

symmetric and we suppose that the unbounded overshoot is added to the extremes. There 

is no harm if it is unimodal single-peaked, but Appendix E shows that this is not a necessary 

condition. 

 

A Property for non-Equidistant Multiary Decision-Making Tasks  

So far, I have exclusively discussed binary decision-making tasks and judgments that 

rely on an equidistant interval scale, which are the most common decision-making tasks. 

The overwhelming majority of existent empirical evidence refers to them, as do existing 

computer simulated “random-error models”, which typically model choices from a binary 

decision space (e.g. Budescu, et.al., 1997c; Dougherty, et.al., 1999; Erev et.al., 1994; Juslin, 

et.al, 1997; Merkle, 2009; Wallsten and González-Vallejo, 1994). These kind of decision-
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making exercises are also the basis for influential principles that combine different biases, 

such as prospect theory (Kahneman & Tversky, 1979, 1992). Presenting a synthetic 

framework that provides a possible explanation for these two kinds of decision-making 

exercises, as I have done, is a valuable finding by itself. It shows what these exercises have 

in common, within what parameter settings the models work, and the kinds of simple 

generative mechanisms that can account for them. Yet despite this success, it is important to 

point out that the identified properties fail when we try to use them to explain the same 

biases for multiary exercises on a non-equidistant skewed scale. This is also the reason why 

I worded the previous sections carefully when discussing the kind of exercises for which the 

presented explanations work flawlessly. 

For example, in a pioneering and now classic study on “psychological probability as a 

function of experienced frequency”, Attneave (1953) showed that we are conservative in 

our estimates of letter frequencies. There are 26 letters in the English alphabet (26-ary 

decision-making exercise) and their probability is not equidistant: the letter E appears 12.3 

% of the time, the letter T 8.9 %, the letter A 8.2 %, whereas more than half of the letters 

appear less than 3 % of the time. There is no fixed value ∆ that separates the likelihood of 

each letter from adjacent letters. Figure 11 depicts Attneave’s findings in the traditional 

presentation style of conservatism. The x-axis represents objective evidence, P(E), and the 

y-axis empirically detected subjective estimates, P(Ê). The estimates are conservative: the 

slope of the regression line, based on P(E), is between 0 and 1 (0.4077 in this case) and 

satisfies the definition of conservatism from equation (I). It shows that the “turning point” 

between over- and underestimation can be found around the mean value of the input, which 

is at ∑i=1 p(ei)/n = 1/n. In this 26-ary alphabet it is at 1/26 = 0.03846. This fits the empirically 

determined turning point remarkably well and agrees with it until the fifth digit: y = 

0.4077x + 0.0228, with y = x = 0.03849.  

According to Property S (identity-symmetric noise), however, the turning point should 

not be at the mean, but at the mid-range point of m = [e0+en]/2 = [0+0.123]/2 = 0.0615.11 In 

other words, if one supposes a symmetric noise distribution (such as used by most 

computer simulations), there would be conservatism around the mid-range point of 6.15 % 

(i.e. the slope of the regression line would cross the diagonal at 6.15 %, see Figure 11), not 

around the empirically detected turning-point around 3.85 %. It turns out that in binary and 

multiary equidistant exercises this issue does not arisebecause the mid-range point and 

mean are equivalent.11 In other words, the previously mentioned “random error models” 

with symmetric noise work well for binary or multiary equidistant decision-making 

exercises (e.g. Budescu, et.al., 1997; Erev, et.al., 1994; Juslin, et.al, 1997; Merkle, 2009), but 

if used to replicate the findings of Attneave’s (1953) multiary non-equidistant exercise, 

Properties S and N (and even Properties S and U) would fail to replicate this empirical 

finding (Figure 11). Although the existing computer simulations unfortunately have not 

been tested for the replication of multiary non-equidistant exercises, our theoretical 

analysis shows this limitation very clearly. There must be other properties for our channel 

in order to provide a working model for these additional cases. 
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Figure 11: Conservative estimate of the likelihood of letters in a newspaper. 

    

Source: based on Attneave, 1953.  

 

Inspired by a well-known finding from information theory (Cover & Thomas, 2006, 

Ch.4, p. 88, Exercise 4.1)15, I introduce an additional property: 

Property D: (Doubly stochastic mixing). The transition matrix is doubly stochastic: Ʃj 

p(êj|ek) = 1; and Ʃk p(êj|ek) = 1. 

A transition matrix is said to be doubly stochastic if all marginal rows and all columns 

of the conditional transition probabilities sum up to 1. For example, the binary symmetric 

channel (Property B) is doubly stochastic, because p(ê1|e1)+p(ê2|e1) = 1, and 

p(ê1|e1)+p(ê1|e2) = 1, whereas the our simulated Gaussian channel from Figure 10b is not 

doubly stochastic: p(ê1|e1)+p(ê2|e1)+p(ê2|e1) = 0.971+0.025+0.004 = 1, but the marginal 

probability of p(ê1|e1)+p(ê1|e2)+p(ê1|e3) = 0.971+0.073+0.024 = 1.068 ≠ 1. 

As shown in Appendix F, the combination of Properties D (doubly stochastic mixing) 

and N (single-peaked unimodal noise) also produces the conservatism bias for likelihood 

estimates on all kinds of random variables and for uniformly distributed input variable of 

absolute values, regardless of distance between the absolute values. Property S is not 

required in this case. Noise does not have to be symmetric around the identity transition. As 

a result, the turning-point is not fixed at the mid-range point.  

How well does Property D fit empirical findings? Table 3 shows the before-

mentioned empirical finding of Hockley’s (1984) 5-ary repetition experiment (with up to 

five word repetitions, p.237) (sample size: 45,760). The result is conservative: 1st and 2nd 
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word repetitions are overestimated (1.064 and 2.222), while 4th and 5th repetitions are 

underestimated (3.883 and 4.410). The empirically detected transition matrix, however, is 

not perfectly doubly stochastic, because the columns do not sum up to 1. The 4th and 5th 

estimates, in particular, deviate from Property D (the 4th column sums up to 1.281, and the 

5th to 0.695). We could improve this fit between Property D and Hockley’s empirical 

findings by setting up a program (for example in MATLAB) which minimizes the distance 

between the empirical transition matrix and the modeled transition matrix, while being 

restricted by double stochasticity. Least squares can be used. But this would only improve 

the fit, not the fact that it does not it must not fit exactly. Furthermore, unlike Property S, I 

am not aware of any plausible psychological reason that might justify why information 

processing should be doubly-stochastic.  

 

Table 3: Transition matrices of P(Ê|E): empirical finding of Hockley (1984) for 5-ary decision-

making exercise 

   Estimate Ê 

1 2 3 4 5 ∑ of 

rows 

Resulting 

mean 

estimate 

E
v
id

e
n

c
e
 E

 

1 
0.959 0.028 0.008 0.005 0.001 1 1.064 

2 
0.028 0.774 0.149 0.041 0.007 1 2.222 

3 
0.006 0.092 0.659 0.206 0.037 1 3.176 

4 
0.003 0.02 0.214 0.617 0.146 1 3.883 

5 
0.001 0.008 0.075 0.412 0.504 1 4.410 

∑ of 

columns 
0.997 0.922 1.105 1.281 0.695 5  

Source: Hockley (1984), p. 237. 

 

Still, on mathematical grounds doubly stochastic transition matrices (in combination 

with Property N) must produce conservative noise for all kinds of decision-making 

exercises. This is a very solid and comforting finding, because we now know that there is at 

least one well-defined constellation of properties in our framework that can explain the 

eight biases even for multiary exercises on a skewed scale. Currently, however, there is a 

lack of empirical and psychological backing for this alternative channel. Therefore, Property 

D should be viewed as a rough approximation and must be used with these caveats until 

there is a more thorough understanding of its implications. It might well turn out that 

further research shows that another noise distribution fits empirical findings much better 

than Property D.  
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Approximate Channel Properties  

So far, I have been very rigorous with the exploration of channel properties. Much in 

the tradition of information theory, I have provided unambiguous mathematical proofs that 

the proposed channel properties must lead to the empirically detected results (see 

Appendices C, D, E, and F). However, psychology is not always as exact. Cognitive biases are 

stylized facts, not mathematical laws. We find them on average and as general tendencies, 

not strictly and absolutely always. In some studies, a particular bias might not even be 

detected or only show up partially or approximately. Therefore, it seems reasonable to also 

explore some approximate channel properties, which hold most of the time, but not always. 

Applying Property N (single-peaked unimodal noise) by itself to the overall memory channel 

and/or the retrieval sub-channel, the respective biases would result for many kinds of tasks 

and for many kinds of remaining channel constellations, but not for all. The lost precision of 

the prediction is recompensed by the elimination of the constraints of Properties S (identity-

symmetric noise) or D (doubly stochastic mixing), which provides more flexibility for the 

psychological interpretation of the involved cognitive process. 

Property N can be fortified with another property, which expands the psychologically 

pleasing Property Ni (“more right than wrong”) to all kinds of binary- and multiary, 

equidistant- and non-equidistant tasks:  

Property Nd: (Identity transition Dominance). The magnitude of each identity 

transition exceeds the sum of the magnitudes of all noise transitions: p(êi|ei) ≥ Σ p(êx|ei), for 

all x ≠ i.  

Property Nd describes so-called diagonally dominant transition matrices. These are 

nonsingular matrices that occur naturally in a wide variety of practical applications (Meyer, 

2001). Combining Property N with Property Nd, the respective biases will result most of the 

time, but still not always. Nevertheless, the latter would require that the noise transitions 

had a very strong and peculiar tendency toward one side, or that the decision-making task 

was set up in a very unbalanced (non-equidistant) manner. By and large, however, the 

channel will produce the detected biases. The psychological interpretation of Properties N 

and Nd is straightforward: on average, our estimates are more right than (the combined) 

wrong (Nd), and we are more likely to confuse “similar things” than “less similar ones” (N). 

Both Hockley’s ternary and quinary exercises (1984) fulfill Properties N and Nd perfectly 

(see Figures 6b and 10b, and Table 3). 
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Conclusions and Limitations 

In this article I have shown that some intuitively pleasing properties of one single 

theoretical framework—following one single underlying logic (mixing noise)—are 

sufficient to provide a possible explanation of eight seemingly unrelated decision-making 

biases. I identified several channel properties and shown via mathematical proofs (in the 

Appendices) that those must inevitably give rise to the regularities detected in empirical 

studies on these biases. By doing so, I have also shown the limitations within which specific 

properties work and when they do not.  

We are now in a position to return to and fully read Table 1, which lists the eight 

empirically detected biases analyzed in this article. The table also summarizes the 

mathematical formalizations that define the biases and the channel properties that can 

produce them. The benefit of using one single theoretical framework is that it enables us to 

formulate a set of unambiguous and formal definitions of those (often slippery) concepts 

that explain our irrationality (biases). This clarity makes them also more susceptible to 

rebuttal from future empirical experiments, which can aim at fine-tuning the our 

understanding of human judgment by testing clearly defined mathematical hypothesis. For 

example, defining the hard-easy bias as σP(Ê) ≥ [r x σP(M)], one is now in a position to quantify 

the question of how strongly this condition is satisfied when testing judges with different 

levels of relevant expertise.  

Of course, eight is only a small percentage of the vast and ever-growing list of 

cognitive biases. Whereas Baron (2008; Table 2.1) lists over 50 biases, the collective and 

open-access online encyclopedia Wikipedia enlists 35 biases for probability and belief, and 

44 behavioral biases (“List of cognitive biases”, 2010). Synthesizing eight of them into one 

framework and one single basic generative mechanism is a humble but promising start.  

 

Resulting Research Questions 

In the future, it will be interesting to explore whether there is a margin of flexibility 

in the application of Properties B, N, S, U, and D, or whether there are other properties that 

both fit the empirical findings and have satisfying psychological explanations. This search 

should include the exploration of approximate properties, properties that work most of the 

time, but not always (such as Properties N and Nd, by themselves or in combination). 

Carefully designed empirical tests can help to differentiate between competing properties. 

It will also be worthwhile to explore in which exceptional cases the identified 

properties are not satisfied. For example, Properties N and Nd have to be adjusted to rates of 

(selective) forgetting or inaccessibility.4 It might be that a certain percentage of each choice 

is forgotten (uniform forgetting rate) or that some selected choices are more or less affected 

by forgetting or inaccessibility. Illusion and forgetting might require adjustments to the 

presented model. 
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A further interesting question is whether it matters how the channel is used and 

how the channel changes while using it. For example, we know that there are differences 

between learned and experienced frequencies and that frequent retrieval of memories has a 

similar rehearsal effect to the repeated consumption of a fact (Baddeley et.al., 2009, Ch.9). 

Also, sample size matters when storing to and retrieving from memory, which can account 

for additional biases (see Fiedler, 1996).  

Another line of research opens up when considering that it is not required that both 

sides of the channel consist of the same number of different values. In reality it is likely that 

the input evidence (what we receive) is much larger than the output estimates that we 

usually rely on. In other words, our mind reduces the complexity of a myriad of inputs by 

categorizing them in a reduced set of classified memory traces. We create prototypes and 

typical groups (e.g., Goldstein, 2005: p.276), and we codify and re-codify them into cognitive 

chunks with varying informational content (Miller, 1956). In information theory, this logic is 

well studied and known as coding theory. Block-codes are often used to group items highly 

dependent on each other. This leads to important efficiency gains and increases the 

reliability of the processed information. Dynamical systems and chaos theory refer to this as 

the level of “coarse-graining” with which the environment is perceived, and it plays a crucial 

role in the interplay between description and prediction of a dynamical system (Gell-Mann, 

1995b; Strogatz, 2001). It should come as no surprise that evolution has figured out a 

similar way to make use of information compression or coarse-graining through 

sophisticated coding in order to improve the effectiveness of our decisions (i.e., how much 

level of detail do we need to get by?). The before-mentioned “representative heuristic” 

(Tversky &Kahneman, 1974) and framing (Tversky &Kahneman, 1981) aim at the same 

question. 

Much in line with coding theory, a major line of research opens up when considering 

that the analysis in this article focuses on non-normalized numerical variables, or on their 

likelihood. This implies that we can meaningfully assign one-dimensional numerical values 

to the observed evidence or its likelihood. I used variance in our analysis, which as a 

measure of difference works fine for decision making tasks involving absolute numbers or 

discrete probabilities but does not work for categorical or nominal variables. There are, 

however, other measures of variation, such as distance and attribute measures. These ask 

about the cognitive similarity between concepts like “tables, chairs, and elephants”, for 

which variance is meaningless as a measure of difference16. A valid theory of human 

decision-making must also work for decision-making exercises that process non-numerical 

cognitive chunks, and variance might not be the right measure of distinctiveness.  

 

Outlook 

Perhaps the largest line of future research involves justifying the psychological 

generative mechanisms for judgment and decision-making biases. Traditional computer 
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simulation models simply plug in and utilize several possible noise distributions and see 

what works for which bias. This method of trial-and-error has led researchers to suggest a 

wide range of input and noise distributions to simulate biases, including normally 

distributed errors, log-odds plus normal and binomial distributed errors, uniform 

distributions, U-shaped, W-shaped, and beta-distributions (i.e. Erev., et al., 1994; Juslin, et 

al., 1997; Budescu, et al. 1997b; Merkle, 2009).  All of them fall under the larger umbrella of 

the properties that I elaborated in this article. In retrospect, is not clear why these 

distributions and not others were chosen for testing in computer simulations. There are 

many other distributions that satisfy Properties S (identity-symmetric noise) and N (single-

peaked unimodal noise), e.g. gamma-, poisson-, laplace-, gauchy-, skellam-, erlang-

distributions, etc. All of them could be used to replicate cognitive biases for binary and 

equidistant decision-making tasks, yet each of them is produced by a different specific 

generative mechanism. Can we find a cognitive justification in favor of one or the other 

generative mechanism for noise in the human mind? Is it possible to device ingenuous 

empirical tests to find evidence in favor of one or the other generative mechanism? 

Thus the future challenge shifts from statistically describing and blindly replicating 

judgment and decision-making through trial-and-error methods, to deepening our 

understanding of the informational processes that create these biases. I have proposed two 

possible candidates: the central limit theorem and a random-walk. Both are justifiable and 

work for binary and equidistant tasks, but not for multiary exercises on a skewed scale. This 

is a major current limitation.  

The analytical tools derived from information theory (going back to Shannon, 1948) 

have been useful in identifying and understanding the related noise processes.  Thus, there 

is reason to believe that the painstaking theoretical groundwork elaborated by 

communication engineers and computer scientists over the last 60 years will provide the 

right language to better understand the underlying informational processes. Still, despite 

the importance of the new analytical tools that have been provided by communication and 

computer engineers (such as the systematic analysis of noisy channels used here), the 

psychological challenge is different from the engineering challenge. Engineers aim at 

perfecting information processes by embedding them into optimized technological 

solutions (see Cover &Thomas, 2006; Massey, 1998). The psychological challenge aims at 

modeling and understanding the particular nature of an imperfect information processing 

system that resulted not from intelligent engineering design but from millions of years of 

(often accidental) evolution. Nevertheless, that the system is not perfect but is instead 

systematically irrational does not prevent us from modeling and analyzing its modus 

operandi with the same analytical tools used by engineers and computer scientists.  We just 

have to build these imperfections into the model. This would never occur to an engineer, 

who strives for optimization. Although the ends of engineers and psychologists are 

different, the means are not: both are based on the nature of information processes such as 

defined by information theory, and related fields such as coding theory and computer 

science.  
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As always with models, such efforts have to balance the tradeoff between clarity and 

complexity, aiming at a level of abstraction that enables the inclusion of as many empirical 

findings as possible, balanced with sufficient clarity and tractability to be illuminating: as 

simple as possible and as complex as necessary. In this sense, information theory might 

even turn out to be at the right level of abstraction to bridge the neurological basis of 

information processing (e.g. Berger, 2003; Berger & Levy, 2010; Borst & Theunissen, 1999) 

with observable psychological effects and therefore provide a long-sought theoretical 

language and set of analytical tools to bridge the gap between neuroscience and psychology.  

 

So This is it? 

When making a decision, is it that we retrieve what we have stored in memory, and 

because we systematically “mess up” during the storage and retrieval processes, our 

judgments turn out to be predictably irrational? Are there no higher cognitive functions 

involved in these eight cognitive biases? No emotions, motivations, or unfathomable 

feelings? No homunculus in our mind fooling us? Is it simply an almost mechanical flaw in 

the design of the system, reminiscent of a sloppily constructed information processing 

machine? It is as simple as that?  

Occam’s razor—a fundamental principle of science—would argue yes, this is it: 

“among the theories that are consistent with the observed phenomena, one should select 

the simplest theory” (see Li &Vitanyi, 2008, p.341).17 We cannot deny the possibility that 

additional heuristics, emotions, or social influences might also play a role in the explanation 

of the discussed biases. But they are in sensu stricto not necessary to explain them. It might, 

of course, also be the case that the model will have to be expanded in order to increase its 

explanatory power to include other biases. In other words, additional explanations can 

explain parts of the biases that mixing noise cannot explain. Occam’s razor is based on the 

assumption that the theory is “consistent with the observed phenomena”, which supposes 

“all other things being equal”. Models with larger explanatory power can be more complex 

than ones with less explanatory power and still fulfill Occam’s razor.  

Of course, the integration of additional biases might require additional 

methodological assumptions. Dougherty et al. (1999) have shown that it is possible to 

replicate the empirical regularities of additional cognitive biases through computer 

simulations like MINERVA, which essentially follow the channel logic presented here (see 

Appendix B). They replicate the empirical regularities of the hindsight bias (Fischhoff, 

1975), the availability heuristic (Tversky & Kahneman, 1973), the representativeness 

heuristic (Kahneman &Tversky, 1973), the conjunction fallacy (Tversky & Kahneman, 

1983), base-rate neglect (Bar-Hillel, 1980), the validity effect (Hasher, Goldstein, & Toppino 

1977), and simulation (Kahneman & Tversky, 1982). It should be possible to determine the 

underlying mathematical properties of the noisy memory channel that lead to these results 

with help of our presented framework. Other heuristics, such as framing (Tversky & 
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Kahneman, 1981) or anchoring and adjustment (Kahneman et.al., 1982) might need more 

profound extension of the model, such as (sequentially dependent) stochastic search 

processes inside memory (such as those that can be modeled with simple Markov-chains 

with a certain kind of memory; e.g., Cover & Thomas, 2006, Ch. 4). These potential 

extensions notwithstanding, noisy storage and retrieval from memory is certainly part of 

the human decision-making process, given that any process of cognition (or even 

perception) always requires some kind of internal information representation (some kind 

of “memory”), and information processes are always noisy, at least to some degree.  

In this sense, the properties proposed in this article should not be seen as final but 

as a starting point for future empirical testing and theoretical discussion. We are far from 

understanding the concrete properties of the human information processing system 

involved in decision-making. In the long term, the overall contribution of this article will 

certainly not consist in arguing in favor of one or another specific property but in showing 

the logic of systematically defining such properties. It might well turn out that noise in our 

minds has a different distribution than the ones proposed here, or that a larger class of 

channels exists, affording explanation of these and many other empirical findings, including 

the processing of non-numerical cognitive chunks.  

Nevertheless, the overall logic of the approach presented here is sound: if human 

beings employ a physical information processing system that gives rise to particular 

empirically detectable input-output combinations (cognitive biases), it must be the inner 

design of the system that gives rise to these particularities.  One can analyze possible 

designs and test for them. Given that different biases are produced by the same information 

processing system, the overall design of the system should reveal how the diverse biases 

are related, and vice versa.  If part of our irrationality is understood as a consequence of the 

peculiar design of our noisy human information processing system, a better understanding 

of its properties will eventually provide us with insights to normatively improve our 

judgment and decision-making.  
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Appendices 

Appendix A: introductory analogy to memory-channel based 

decision-making schematizations 

 

This appendix gives an introduction to the logic of noise influenced memory-based 

decision making models and to the kinds of schematizations used to present them. It will 

help us to set the stage for what is to follow in the article.  

Let us start with a memory-based task. Suppose we would like to make a decision 

about the “redness” of a red object that we are given. Our strategy would consist in 

collecting and storing color traces which are purely red and once we are asked to judge 

redness, we would go to our storage room and pick up some of our prototypical red traces 

and compare their color with the object to be judged. In case our storage and retrieval 

processes would be perfect, we would be able to make a perfect judgment about the redness 

of the object. If this process is not perfect, we might erroneously end up with a sample that 

is not completely red and our judgment will be biased. The analysis of our storage and 

retrieval habits will show us the nature of this bias and be a first step in looking for 

strategies to minimize it.  

In other words, when confronted with a memory-based decision-making task, the 

judge sends a cognitive probe to memory and compares it to existing memory traces. The 

content of what is found in memory will provide the judge with the answer to the decision 

problem. The process is not perfect. We will refer to the “confusion” and “mistakes” in this 

process as “noise”. The bias of the judgment can be traced back to two possible sources: one 

is a biased sample in memory (which results from the noise in the storage channel); and the 

other one is biased sampling from memory (which results from the noise in the retrieval 

channel). The combination of the storage and retrieval channels constitutes the overall 

memory channel. We assume that the channel has certain properties that we would like to 

define.  

In information theory it is customary to present these kinds of channels in a 

diagram similar to the ones shown in Figure A.1 (see Massey, 1998, Ch.4; Cover and 

Thomas, 2006, Ch.7). Figure A.1a essentially tells us that the noisy channel mixes blue and 

red input evidences. As long as the original still prevails, this will turn the red into a ruby 

and blue into violet. We depicted the noise with crossover arrows. The little numbers next 

to the arrows tell us about the respective transition probabilities involved in the process. 

Besides mixing evidence, we have to consider that not all input might make it. The effect is 

equal to deleting parts of our sample. We start out with equal amounts of red and blue [50% 

each]. 70% of each goes straight through the channel (we call this the identify 

transformation), 20% of each color is mixed with the other color (noise) and 10% of each is 

deleted. 



TOWARD A SYNTHESIS OF COGNITIVE BIASES…   Oct.2011                            58 
 

 

Figure A.1b opens up the overall memory channel and shows that the overall 

memory channel actually consists of two different sub-channels. The noisy storage channel 

is followed by the noisy retrieval channel. In Figure A.1b, we start off with less red than blue 

[0.3, 0.7], and it is more likely to confuse blue with red [0.3], than red with blue [0.2]. The 

retrieval channel is in a special state of “highest uncertainty/entropy” (the uniform 

distribution), which leads to a homogeneous output estimate of ruby-violet, independent of 

the input evidence. 

 

Figure A.1: Two first examples of the memory channel: (a) overall memory channel; (b) opened 

up into storage and retrieval subchannels 

   

 

Source: Author. 

It is important to note that the intermediate memory step might be very short. 

Several perceptual tasks rely on sensory memory that corresponds approximately to the 

initial 200–500 milliseconds after an item is perceived. Therefore, the process might not 

appear as schematic as presented here (storing in memory, then sending a probe to 

memory, etc.), but rather as one process. Notwithstanding, without having anything 

impregnated in any kind of (whatsoever short and instable) memory, no perception could 

occur. Therefore, memory (of some kind) always makes part of any kind of judgment and 

decision-making. 

Throughout the article, we will identify which kind of noise is requires in the overall 

channel (Figure A.1a) to replicate six cognitive biases, and which kind of noise is necessary 

in the retrieval channel (Figure A.1b) to replicate two additional biases. 

 

Appendix B: the MINERVA-DM channel 

In this Appendix, we discuss the essential properties of the MINERVA-DM channel 

(see Hintzman, 1988; Dougherty, et.al., 1999) (see Figure A.2). The goal is not to replicate 

the exact nature of the MINERVA-decision-making model, but to model its essential logic 
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with the help of an information-theoretic channel presentation (see Appendix A; more 

formal in Massey, 1998, Ch.4; Cover and Thomas, 2006, Ch.7). Hintzman (1988) chooses a 

ternary input variable of -1, 0, +1, which is basically a binary alphabet, plus the possibility of 

deletion. The storage channel (in MINERVA called “learning channel”) is implemented with 

what is known as a “Binary Erasure Channel” (BEC) in information theory. The retrieval 

channel is implemented with what is known as the “Binary Symmetric Channel” (BSC). The 

channel is symmetric because both identity transitions, and both noise transitions are 

equal, p(O1|M1) = p(O2|M2) = Sc, and p(O2|M1) = p(O1|M2) = 1 - Sc. Both are very special and 

important channels in information theory (Massey, 1998, Ch.4; Cover and Thomas, 2006, 

Ch.7). They are the simplest existing channels and their neat properties enable a 

straightforward analysis with nice results.  

 

Figure A.2: Rough schematization of the MINERVA-DM model as a memory channel 

 

Source: Author, based on the logic presented in Hintzman, 1988 and Doughterty, et.al, 1999. 

 

The technical details of the specific implementation of MINERVA-DM are more 

involved than this simplified schematization. One aspect is that Hintzman (1988) chose a 

multi-trace memory model to implement MINERVA. He also chose not to apply the noise to 

an entire memory trace, but to its constituents, which he calls features. He uses a ternary 

code (-1, 0, +1) to represent the value of each feature, which make up the content of specific 

memories. Each of these features is passed through the channel, which has different 

probabilities of converting a -1 into a +1, and vice versa, or deleting it, which means 

converting it to 0. As the features change, the content of the memory trace change and it can 

even lead to the fact that the memory does not represent anymore what it originally meant 

to represent. The rate with which the content of the memory traces change, depends on the 

Input1 Memory1 Output1

Input2 Memory2 Output2

Input0 deletedMemory0

p(M1|I1) = L 

p(M0|I1) = (1-L)

p(M0|I0) = 1 

Input  ➙ Learning Channel     ➙ Memory    ➙ Retrieval Channel  ➙ Output

p(M0|I2) = (1-L)

p(M2|I2) = L 

p(O1|M1) = Sc

In the case presented here, there are only two different memory traces (chunks). The two resulting channels are very special and important in Information 
Theory. They are the most simple existing channels and their neat symmetric properties enable a straightforward analysis with nice results. The first one is 
called “Binary Erasure Channel” (BEC), and the second one “Binary Symmetric Channel” (BSC). Their repsective channel capacities are and CBSC= 1-H(Sc).  

MINERVA2 is more complex than this simplified representation and includes variations within traces (parts of traces are deleted, not entire traces), a very 
particular matching process, as well as many more than just two different kinds of traces (in each applications with different distributions). This increase in 
complexity surely influences the concrete values of the probabilities in the channel and the outputs, but (especially over many traces), it does not change the 
basic properties of the channel (…Sc can be from 0-1, in this case here, it only makes sense to have it from 05-1)….

Studying these properties, it quickly becomes clear that the only way that the variation of L impacts the output is through a reduction of the sample size of 
traces in memory, by exactly [1-L], which leads to the well-known channel capacity of the BEC: CBEC= L (see Cover and Tomas, Ch.7; Massey, Ch.4). The reason 
is that L is applied symmetrically to all inputs and there is no crossover possibility in the Learning Channel, BEC. This is in agreement with the MINERVA2 
similation results of Dougherty, et.al., 1999, shown in their Appendix B. As pointed out by them, the effect of smaller sample sizes is increased variability (the 
inverse of the law of the large numbers). On contrary, the Retrieval Channel, which is BSC, is sensible to variations in S C (this is also in agreement with the 
simulation of Appendix B, Dougherty, et.al., 1999). Decreasing SC (i.e. from 1-0.5, which is the range that makes sense in this representation), increases the 
crossover probability and therefore makes both outputs “more similar”. The effect on the output is known as “conservatism” in psychology, “regression 
toward the mean” in statistics or “increased entropy” of the output in Information Theory. This last definition is in agrement with the terminoloy that 
describes the well-known channel capacity of the BSC: CBSC= 1-H(Sc) (see Cover and Tomas, Ch.7; Massey, Ch.4).

p(O2|M1) = 1-Sc

p(O1|M2) = 1-Sc

p(O2|M2) = Sc

THE MINERVA2 CHANNEL
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transition probabilities that convert the values of the features and on the criterion that 

defines when a code in a memory matches or not.  

MINERVA also includes a particular matching process (which is not further justified 

by the authors). It basically replicates what is known as the Hamming distance between 

codewords in information theory. These particular specifications do not change the basic 

properties of the MINERVA-DM channel, which follows the logic of a BEC followed by a BSC: 

the storage/learning channel can delete input, and the retrieval channel has the possibility 

that “false friends” sneak into the final judgment. 

Studying the logic of the MINERVA-DM channel, it becomes clear that the only way 

that the variation of L impacts the output is through a reduction of the sample size of traces 

in memory, by exactly [1-L], which leads to the well-known channel capacity of the BEC: 

CBEC= L (see Massey, 1998, Ch.4; Cover and Thomas, 2006, Ch.7). The reason is that L is 

applied symmetrically to all inputs and that there is no crossover possibility in the 

storage/learning channel. This prediction was reconfirmed by the MINERVA-DM simulation 

results of Dougherty, et.al., 1999, shown in their Appendix C. As pointed out by them, the 

effect of smaller sample sizes is increased variability (the inverse of the law of the large 

numbers). On contrary, the retrieval channel, which is BSC, is sensible to variations in SC 

(this is also in agreement with the simulation of Appendix C, Dougherty, et.al., 1999). The 

smaller SC, the larger the crossover probability. The result is that both outputs are “more 

similar”, i.e. they are closer to their “average”, which is the uniform distribution (in this 

binary case: 0.5-0.5). Since the retrieval channel is BSC, its channel capacity is: CBSC= 1-H(Sc) 

(see Massey, 1998, Ch.4; Cover and Thomas, 2006, Ch.7). MINERVA-DM applies noise of the 

same distribution to all input evidence. As we will show in Appendixes B and D, this 

requirement is not necessary to assure conservatism.  

 

Appendix C: Effects of Properties N and S on a bounded noise 

distribution 

This Appendix shows how Properties N and S lead to the fact that all mean estimates 

Ê, based on some concrete input evidence ei, (Expct.val.[Ê|ei]), must lie somewhere in the 

grey areas of Figure 3b. For likelihood/probability/frequency estimates, the interval 

variables ei are replaced with probabilities. In this case, the exercise focuses directly at 

estimating the value Expct.val.[p(p(Ê)|p(ei))]. For reasons of clarity of presentation we will 

treat both cases identically and refer to E instead of P(E).  

We use a little trick and scale the identity transition ei to 0: e0 = ê0 = 0. We denote all 

estimates to the “positive” side with êu,  u={0,1,2…u}, and estimates to the “negative” side of 

the identity transition with êd, d={0,1,2…d}. We stick to the assumption of a one-

dimensional equidistant interval scale, which results in: êu = ê0 + u∆; êd = ê0 - d∆. The result 

looks like Figure A.3a. Property N assures that none of the “weights” can be larger than the 

value assigned to e0 (identity transition). Property N assures that the weights get smaller 
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the further they are away from the identity value, and Property S demands that the weights 

are symmetrical around the identity value. The total number of possible values is: n = 

u+d+1, whereas +1 counts for the identity value at 0 (note that we do not consider the 

forgetting / inaccessibility option here. If we would, the number of possible values would be 

n+1). 

Visually the logic of the proof can be seen when playing around with Figures A.3. 

When moving the balance triangle all the way to the negative extreme (d ≤ u), the minimum 

value is 0 and the maximum positive value can be achieved by placing the highest possible 

weight on the largest possible numbers (Figure A.3b). Considering the restrictions of 

Property N, the uniform distribution achieves this maximum value (in this case: u∆/2). In 

Figure A.3c, d ≥ u, and since d is preceded by a minus sign, the expected value can only be 

negative, with: [u-d]∆/2 ≤ Expected value ≤ 0. 

 

Figure A.3: (a) representation of an evidence at the middle of the possible scale in the 

task; (b) representation of evidence at the lowest possible value of the scale; (c) representation of 

evidence one step from the highest possible value on the scale. 

      

Source: author. 

In a more formal proof we first define the limits of the possible expected values (note that EV without 

hat and no underline, refers to “Expected Value”, not to be confused with Ê: estimation; and E: 

evidence): 

If d ≤ u, then: 
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We now reformulate the EV[Ê|e0], following Properties S and N: 
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If d ≤ u (group all possible symmetric noises under the same sum and cancel them out):  

  [ |  ]   ∑                             ∑                     
       

   

 ∑               
        

 ≥ 0 (its minimum), achieved if p(êu|e0)=0, for all d<u;   

 ≤ with its maximum if P(Ê|e0) = 1/n (limited by Property N to the uniform distribution, which 

puts most weight on the positive extremes), at: 
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=> if d ≤u, then 0 ≤ EV[Ê|e0] ≤ [(u-d)∆]/2 = [êu+êd ]/2= its midrange point m, see Figure 3b. 

If d ≥ u (group all possible symmetric noises under the same sum and cancel them out):  

  [ |  ]   ∑                             ∑                     
       

   

 ∑                 
        

 ≤ 0 (its maximum), if p(êd|e0)=0, for all d>u;   

 ≥ with its minimum if P(Ê|e0) = 1/n (uniform, limited by Property N), at: 
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∑          

                                        
      

 
  

=> if d ≥ u, then 0 ≥ EV[Ê|e0] ≥ [(u-d)∆]/2 = [êu+êd ]/2= its midrange point m, see Figure 3b. 

 

Appendix D: Fitting the Gaussian channel 

This Appendix shows how to convert a Gaussian channel into discrete transition 

probabilities and how to fit it to empirical finding. Usually, the most straightforward way of 

fitting normal noise to empirical findings is to set up a program (for example in MATLAB) 

that minimizes the distance between the empirical transition matrix and the modeled 

transition matrix, which is defined by the cutoff criteria between the variables, and the 

mean and variables of the normal distribution. Least squares can be used.  

In the following I will go “manually” through the simple process of the ternary 

exercise of Figure 10. The problem that we face is that we have two degrees of freedom to 

work with when fitting the curves to the empirical data: the mean and variance of the 

normal distribution. However, since we suppose an equidistant interval scale (in this case 

∆≈3.83σ), the means of all three normal curves are defined once two means are chosen. The 

remaining degrees of freedom stem from the adjustable variances. This implies that it is not 

possible to perfectly fit the three curves to the six degrees of freedom of the empirical 

finding. We would not have had this problem in a binary decision-making task.  
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We start by arbitrarily defining that e1 fits the standard normal curve with µ=0 and 

σ=1. We know that the identity transition of e1 is 0.971 and can therefore use the inverse of 

the cumulative normal distribution to identify the value x: Ф(1.896) ≈ 0.971, where Ф(x) is 

the cumulative standard normal function. We then have the freedom of choice for the mean 

and variance of e2 (defined by the variables of the normal probability density function: f(x) 

= 1/√(2π)σ e –(x-µ)^2/2σ^2), as well as for the variance of e3 (once we define the mean of e2, the 

equidistance requirement determines the mean of e3). Instead of fitting all estimates as 

good as possible, I took the deliberate decision to “sacrifice” the fit of the noise-transitions 

p(ê2|e1) and p(ê3|e1), since they are very small. It turns out a mean of µ2=3.83 and variance 

of σ2=1.33 for e2 and a variance of σ3=2.92 for e3 fit to model the remaining transition 

probabilities of those curves. As expected, the “cost” paid by the mismatch of e1 is not very 

large.  

 

Appendix E: Effects of Properties S and U on an unbounded noise 

distribution 

This Appendix shows how Properties S and U lead to the fact that all average 

estimates Ê, based on some concrete input evidence ei, (Expct.val.[Ê|ei]), must lie 

somewhere in the grey areas of Figure 3b. As in Appendix C, we will refer to exercises that 

focus on estimating absolute numbers, E, but the same argument holds for estimations of 

discretized probabilities P(E). The basic logic of the effect of Property U can be seen when 

looking at what happens when we add the overshooting noise to the extremes of a 

symmetric distribution. A symmetric distribution around ei has expected value = ei. We can 

normalize Expct.val.[E] = 0 (see Figure A.4a). When the valid scale is limited on the left side 

at the identity (Figure A.4b), and the weight of the (formerly) negative values is added to 

the left-extreme value 0, the expected value ≤ u∆/2. When the scale is limited to the right 

(Figure A.4c): Expected value ≥ [u-d]∆/2. Following this logic results in the fact that the 

subjective estimates Ê, must lie somewhere within the grey-shaded areas in Figure 3b.  

 

Figure A.4: (a) normalized around 0; (b) left overshoot added to negative extreme; (c) right 

overshoot added to positive extreme. 

          

Source: author. 

The formal proof follows the same notations as in Appendix C, with the addition that the unbounded 

noise is defined by v = {- … - ,  ,   , …  }. As in Appendix C have to proof that: 
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[u+d]∆/2 ≤ Expected value ≤ 0
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If d   u then     E[Ê|e0]   [(u-d  ]/2 .  

If d   u then     E[ |e0]   [(u-d  ]/2 . 

We now reformulate the EV[Ê|e0], following Properties S and U: 
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If d   u  group all possible symmetric noises under the same sum and cancel them out :  
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Whereas d is a constant   u and u are positive integers.  

     its minimum) if p(êu|e0   , for all d u;  

  its maximum at: 0.5 x (u-d     (u-d  /2 = [êu+êd ]/2= its midrange point, see Figure 3b (given 

symmetry of unbounded distribution, the maximum possible weight on the positive u-side is 

0.5). 

If d   u  group all possible symmetric noises under the same sum and cancel them out):  

                                   ∑                  
       

Whereas u is a constant   d and d positive integers.  

     its maximum) if p(êu|e0)= , for all d u;  

  its minimum at: 0.5 x (u-d     (u-d  /2 = [êu+êd ]/2= its midrange point, see Figure 7 (given 

symmetry of unbounded distribution, the maximum possible weight on the negative d-side is 

0.5). 

 

Appendix F: Effects of Properties D and N 

We proof that a single-peak unimodal (Property N) noise distribution that has a doubly stochastic 

transition matrix (Property D) results in regressive behavior for any kind of input distribution 

(conservatism). We start with the reformulation of our conservatism requirement, equation (III): 

 0 ≤ cov(E,Ê) ≤ Var(E) 

 0 ≤ EV[EÊ] - EV[E] * EV[Ê] ≤ EV[E2] – (EV[E])2 ; 

For n-ary decision-making tasks, scale to: 

  [E]  ∑  (  )     
 
     ; whereas     are positive numbers (in case of likelihood estimates 

∑    
 
      and  (  ) is uniform with  (  )  

 

 
 (like in Hockley’s exercise, or, for likelihood 

estimates, one can imagine that likelihoods are represented by n memory traces, each representing 

the likelihood with its respective value   ). 

       [E ]    [E ];  
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First, we focus on the left side of the inequality, for which we will show that Properties N and 

D assure that the resulting correlation cannot be negative: 
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numbers which represent how much smaller the noise is than the identity transition  ( ̂ |  ). Note 

that, according to Property N,    = 0 at     , and increases with j being more distant from k.  
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    ], with |-j|+|+j|=n, whereas  ̂   denotes all negative values of  ̂ , 

and  ̂   stands for all positive values of  ̂ . Since both parts have the equal weight, it is possible to 

rearrange both sums and organize them in according to equal distributions (“weigh them against 
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For negative    :      is also negative for all    with m≥k (given Property N), but not 

necessarily for    with m<k (since noise is not symmetric around identity m=k). Likewise, for 

positive    :      is also positive for all    with m≤k, but not necessarily for    with m>k. However, 

when rearranging to ∑   
 
    ∑   

 
   (    ), we can see (since   [E]  ∑     

 
     ), that it is 

impossible that these eventualities drag the second sum into the negative 

   ∑   
 
    ∑   

 
         . 

This shows that the correlation cannot be negative (    [E ]). The right side of our initial 

inequality from equation (III) can be shown with similar reformulations, but actually, this proof and 

its insight are not new. It is very well known in information theory that a doubly stochastic transition 

matrix converts the channel input in a way that the output is overall closer to its mean (“stochastic 

mixing increases entropy”) (see Cover and Thomas, 2006, Ch.4, p. 88, Exercise 4.1). We have defined 

conservatism as the output being “closer to the mean” than the input (see equation (II), formulated in 

variance). The new part is, that in our case, we claim that conservatism also implies a positive 

correlation between input and output (out estimates have “more to do with the evidence than they 

don’t”). Property N assures this, as shown above.  
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Footnotes 
 

1 Information theory is a branch of applied probability theory and is nowadays mainly taught in 

Electrical Engineering and Communication Departments. It is the rare breed of a branch of science 

that can almost exclusively be traced back to one single and groundbreaking paper: Claude Shannon’s 

(1948) “A mathematical theory of communication”. For an introduction see Pierce (1980). For a more 

formal approach see the introductory lecture notes of Massey (1998), which might be an easier read 

than the standard textbook in Engineering Departments, Cover and Thomas (2006), which is more 

complete. 

2 For example, the transition probability p(ê1|e1) is the dot product of the two transition vectors 

p(M|e1) and p(ê1|M). In this ternary case: p(ê1|e1) = [p(m1|e1) * p(ê1|m1)] + [p(m2|e1) * p(ê1|m2)] + 

[p(m0|e1) * p(ê1|m0)]. To completely understand the nature of the storage and retrieval channels, it 

would be necessary to know which way each evidence takes through each sub-channel. 

3 The multiplication rule applies to calculate the probabilities of the random variable Ê. For example, 

p(ê1) = [p(e1)* p(ê1|e1)] + [p(e2)* p(ê1|e2)] + [p(e0)* p(ê1|e0)]. In words: the probability of ending up 

with an estimate of event e1 after passing through the memory channel, is the probability of e1 being 

transmitted correctly, plus the probability that noise turns e2 into e1, and the probability that e1 is 

perceived, even though nothing was there.  

4 The case of the outgoing branches from e0 is a special case. One would naturally expect that where 

there is no input, nothing should be stored in memory, and it should not affect our judgment. 

However, since the early 1900s, research on Gestalt heuristics has shown that our mind makes up 

(often completes) input where none is originally there (e.g. Goldstein, 2005: p.74). Actually, our 

sensations are only a small part of our perceptions. We recognize shapes and faces where there are 

none, and we mentally complete partially concealed objects, even though their unseen parts might be 

missing. In other words, crossover probabilities p(ê1|e0) and p(ê2|e0) describe pure products of our 

imagination, which also influence our estimates. A conceptually similar case is ê0, which represents 

the case that an input does not make it. This can have two reasons: forgetting or inaccessibility. In the 

first case, the input is not (permanently) stored in memory. In the second case, it is “somewhere” in 

memory, but at the moment of decision making, we cannot access it (see e.g. Baddeley, Eysenck and 

Anderson, 2009, ch.9). Popular examples of inaccessibility include parking one’s car or misplacing 

one’s keys and using some kind of retrieval strategy to access the temporarily lost memory trace. 

5 The concept of “mutual information” is applicable for likelihood/probability estimations and is one 

of the core concepts of information theory: if knowing the distribution of P(E) does not tell us 

anything about the specific values of P(Ê), we say that both have 0 mutual information, I(E;Ê)=0 (see 

Massey, 1998: Ch1; Cover and Thomas, 2006: Ch.2). 
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6 Note that the presentation does not consider e0 (illusion), nor ê0 (forgetting/inaccessibility) 

(compare with Figure 2). It assumes that output estimates can only reflect valid input options. In 

reality, however, the estimates might include options made up by the judge (option: other-than-one-

of-the-valid-responses). This is often empirically difficult to obtain, but in this case Hockley did. He 

mentions (1984: p.230) that of the valid 47,474 judgments, 354 referred to an (inexistent) 4th 

repetition. However, in line with most studies in decision-making, he unfortunately does not specify 

their origin and simply takes them out of the sample. In line with this general practice, in the 

following we will not deal with illusions and forgetting/inaccessibility.  

7 From the data in Figure 6b, the reader might want to verify that the probability of estimating a 1st 

repetition is 38.7%: p(ê1)= [p(e1)*p(ê1|e1) + p(e2)*p(ê1|e2) + p(e3)*p(ê1|e3)]=0.387. Likewise, 

p(ê2)=0.358 and p(ê3)=0.255. Equally, given that subjects estimated a 1st repetition ê1, the probability 

that it was (originally) a 2nd repetition is 6.1%: p(e2|ê1)= [p(e2)*p(ê1|e2)]/p(ê1)= 

[p(e2)*p(ê1|e2)]/[p(e1)*p(ê1|e1) + p(e2)*p(ê1|e2) + p(e3)*p(ê1|e3)]= 0.061.  Likewise: p(e1|ê1)=0.920 

and p(e3|ê1)=0.019. 

8 Proof by counterexample: take a quaternary input, and let p(ê1|e1)=p(ê3|e1)=p(ê4|e1)=1/3; 

p(ê2|e2)=1; p(ê3|e3)=1; and p(ê1|e4)=p(ê2|e4)= p(ê1|e4)=1/3. 

9 In a binary decision making task (two realizations to choose from, e.g. “right or wrong”), Property N 

implies that the identity transition, p(êi|ei), is larger or equal to 0.5. In multiary decision-making 

exercises, it is possible that the sum of all crossover noises is larger than the single probability of the 

identity transition (e.g. p(ê1|e1) = 0.4; p(ê2|e1) = 0.3; p(ê3|e1) = 0.3). However, Property N states that 

none of the individual noise transitions can be larger than the identity transition. In an extreme case, 

Property N allows for equality among all transition probabilities: the identity and noise transitions 

are uniform with p(êi|ei) = p(êx|ei) = 1/n, with n being the number of input realizations. Such channels 

convert our estimates in homogeneous estimates. In short: uniform noise and identity transitions 

lead to uniform estimates (proof: Expct.Val.[Ê|E=ei] = ∑j êj p(êj|ei) = ∑j êj [1/n ]). Input evidence and 

output estimate are independent and have no mutual information. 

10 The same can be applied to likelihoods, since the probability scale from [0-1] is an interval 

variable. For a exercises aiming at multiary likelihoods, the one-dimensional scale is a probability 

distribution between [0-1], with i representing the discrete steps of a discrete probability 

distribution, 0 < ∆ < 1 and the sum of all p(êi) summing up to 1. Equidistance implies: p(êi) = p(êo) + 

i∆, For example, i could be i = {0, 1, 2, 3}, ∆ = 0.1, and p(êo) = 0.1, which results in: p(ê1) = 0.1; p(ê2) = 

0.2; p(ê3) = 0.3; p(ê4) = 0.4, with Σp(êi)=1. 

11 ∑i=0 ei /[n+1] = ([eo+0∆]+[eo+1∆]+[eo+2∆]+…+[eo+n∆])/[n+1]=([n+1]*eo+(0+1+2+…+n)∆]/[n+1] = 

eo+{[n(n+1)/2]∆}/[n+1] = eo+[n∆]/2 = eo+[eo+n∆-eo]/2 = [eo+en]/2 = m. 

12 While typical, this question is actually not very well formulated to detect the full scope of the bias, 

since it is not exhaustive. A subject might have the opinion that Absinthe is neither a liqueur, nor a 
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precious stone. Well-formulated binary decision-making exercises should include a complement 

(“everything else”). 

13 Following the pioneering work of Lichtenstein and Fischhoff (1977) and Fischhoff, Slovic, and 

Lichtenstein (1977), often studies limit the possible confidence rating to a scale of 50%-100%, which 

is sometimes referred to the “C50 paradigm” in literature, in comparison to a 0-100% scale, 

sometimes called “NC100” (see Sieck and Yates, 2001). The reasoning behind the 50%-100% scale is 

that a judge should have at most 50% uncertainty in a binary decision-making task: when in doubt, 

opt for “fifty-fifty”, you cannot do worse. What Lichtenstein, Fischhoff and others intuitively 

integrated in this setup is what information theorists call the highest entropy state. In case of highest 

uncertainty, it the natural choice is to opt for the uniform distribution. Shannon (1948) would have 

said that the uniform distribution contains the most uncertainty (see also Massey, 1998, Ch.1; Cover 

and Thomas, 2006, Ch.2). The implicit integration of this important insight into the experimental set 

up can distort the results. For example, a judge might actually think that absinthe is a flower, and 

therefore could have less than 50% confidence that it is either a liqueur or a stone. The highest 

entropy state depends on the number of possible variables of the distribution, since the uniform 

distribution (the state of highest entropy) has probability: p(uniform)=1/[number of possible values]. Forcing 

the judge to use a 50%-100% scale can distort the proportions that the judge actually has in memory. 

Some empirical evidence seems to suggest that in these situations judges “squeeze” the extended 0-

100% scale into a 50%-100% scale, which distorts results (e.g. see the data of Liberman and Tversky, 

1993, on what they call “designated” and “inclusive” judgments, whereas Figures at p. 169 show that 

limited scales foster overconfidence and neglect underconfidence; see also data from Sieck and Yates, 

2001). This limitation limits the possibility to detect underconfidence, which—especially in a binary 

decision-making task—is then squeezed onto the 0.5 turning point (this phenomena can already be 

seen in the original study of Fischhoff, et.al.,  1977: their Figure 1).  

14 Juslin, et.al. (2000) quantify the hard-easy effect as a regression weight between the proportion 

correct (in our notation P(Ê)) and the difference between confidence and proportion correct (in our 

notation [P(M)- P(Ê)]). Empirical studies find that this relationship tends to be negative (see Merkle, 

2009). Merkle (2009) follows this reasoning and expands cov(P(Ê),[P(M)- P(Ê)]) = σP(Ê) [r x σP(M) - 

σP(Ê)], which is  negative if  σP(Ê) > r x σP(M) (see our equation II).  

15 I like to thank Prof. Gerhard Kramer (Technische Universität München, USC’s Department of 

Electrical Engineering, IEEE Information Theory Society) for pointing out this interesting insight to 

me.  

16 In information theory, similarity of different codes and blockcodes (i.e. in our case, cognitive 

concepts and cognitive chunks) is often measures with the Hamming distance between two 

codewords (but any other distance measure can be used). This requires that both are written in the 

same code. Unfortunately, we do not have an explicit codebook that reveals the coding structure that 
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we use cognitively. In the long run, it is surely an indispensable undertaking to roughly map out our 

cognitive codebook. How distant is one concept from another? Coding theory, a branch of 

information theory, has developed the respective analytical tools. In social science, attribute 

measures are often used to classify types. A service company is distinct from an agricultural firm 

because of the distance in their specific attributes. The distance measure in the applied code might or 

might not be related to the distance in attributes. 

17 According to Bertrand Russell, the actual phrase by William of Ockham (c.1290-c.1349) was: “It is 

vain to do with more what can be done with fewer”. Aristotle (c.384-322B.C.) anticipated Occam’s 

insight: “We may assume the superiority ceteris paribus of the demonstration which derives from 

fewer postulates or hypothesis—in short, from fewer premises”. Isaac Newton (1642-1727) states 

the principle as rule number 1 for natural philosophy in the Principia: “We are to admit no more 

causes of natural things than such as are both true and sufficient to explain the appearances. To this 

purpose the philosophers say that Nature does nothing in vain, and more is in vain when less will 

serve; for Nature is pleased with simplicity, and affects not the pomp of superfluous causes”.  Albert 

Einstein formulated the same idea this way: “It can scarcely be denied that the supreme goal of all 

theory is to make the irreducible basic elements as simple and as few as possible without having to 

surrender the adequate representation of a single datum of experience”. 


