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The article reformulates evolutionary fitness as information processes. This changes our 

understanding of evolutionary change, as it allows its formal expression as a communication 

process between the evolving system and its environment. Similar to how a communication 

process reveals a communicated message among possible messages, evolution reveals the 

surviving fittest member of a population. The amount of uncertainty reduced by evolution is 

quantified by ‘negentropy’, which turns into relative entropy and mutual information in the 

general cases. Bits and bytes become a quantifiable ingredient of evolutionary growth. More 

information between the population and its environment implies greater fitness. Information 

also turns out to be the link between the distinct population types in space and the unfolding 

environmental patterns in time. 
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ABSTRACT 

Recent studies have shown that specific aspects of evolutionary dynamics can be expressed 

in information theoretic terms. This article connects and generalizes these partial results by 

presenting several complete multilevel decompositions of evolutionary fitness in terms of 

information processes. We formally show how evolution produces negative entropy, which 

turns into Kullback-Leibler relative entropy in the general case, and into mutual information 

in the case of independence between the evolving population and its environment. We 

encounter information theoretic ways to express and link longstanding concepts of 

evolutionary theory, such as Malthusian fitness, Fisher’s fundamental theorem of natural 

selection, the Price equation, the replicator equation, evolutionary sustainability, and 

multilevel emergence. This leads to new conceptualizations of well-known phenomena, such 

as the expression of changes in fitness as the population’s descriptive complexities from the 

perspectives of the past and future. Fitness itself attains an intuitive, but formal 

interpretation as the amount of informational ‘fit’ between the evolving population and its 

environment, expressed as mutual information. We also find a space-time version of Ashby’s 

law of requisite variety between the evolving population and the corresponding 

environmental pattern, and a generalization of Kelly’s bet-hedging result, both time-honored 

results from 1956. The insights gained from the reformulations of fitness as evolving 

information underline the familiar argument that scientific advancements often simply draw 

from ontological re-conceptualizations of well-known problems. Showing the generality of 

the results, the obtained theory is applied to calculate the amount of informal bits processed 

by several dynamics of socio-economic and cultural evolution. 
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While it is often suggested that evolution can be interpreted in terms of an information process 

that transforms complexity between the environment and the evolving system (1), a more formal 

treatment of this idea is still incomplete. Recently important advancements have been made in 

the establishment of formal links between the theory of evolution and information theory (2-8). 

Among them, it has been shown that the part of the evolutionary process that refers to natural 

selection (defined by Fisher’s fundamental theorem as the variance in growth rates (9-12) turns 

out to be equivalent to the information theoretic measure of Fisher information (2,3,12-14). 

While these results provide support that evolutionary aspects can be understood in terms of 

evolving information, they exclusively focus on natural selection. As the evolutionary theorist 

Ronald Fisher reminded us with the first sentence of his influential 1930 book: “Natural 

Selection is not Evolution” (9; p.vii), but merely part of the evolutionary dynamic (10,15). This 

article presents several decompositions of complete evolutionary change in terms of information 

theory (in the sense of (16-18)), and links them to longstanding concepts that have turned out to 

be useful when reasoning about evolutionary change. Being descriptive of any kind of 

evolutionary process, it is not subject to limiting modelling assumptions. Showing the generality 

of the results, the decompositions are applied to several empirical cases of human socio-

economic and cultural evolution, including the evolution of exports in an economy, the evolution 

of fundraising dynamics of entrepreneurs, and the evolution of online social media. 

Overview 

The first section starts the exploration by expressing evolutionary fitness in terms of entropies. 

The concept of entropy has filled the imagination of scientists since the 1800s, and is one of the 

most fundamental metrics in physics (19-21), statistics (22,23) and communication (16,18). It 

basically measures the level of surprise or uncertainty in a distribution. Evolution can be 
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understood as a probability game that resolves uncertainty with regard to the ‘survival of the 

fittest (type)’. The resolution of uncertainty can be formally presented as negative entropy, or 

‘negentropy’ (equations (1.2) ad (2.1)).  

The second section generalizes this logic to evolutionary processes that are out of equilibrium 

and still ongoing (no determination of the ‘fittest’ (yet)). Relative entropy turns out to be the 

adequate information theoretic metric in this case. Being a relative metric, it allows to quantify 

the resolved uncertainty relative to the present- or relative to the future generation. From the 

perspective of the future, uncertainty has already been resolved, resulting in the subtraction of 

relative uncertainty, while from the perspective of the present, the descriptive complexity of the 

involved uncertainty (such as expressed in informational bits) is a positive ingredient of fitness, 

and is still to be exploited (equations (3.1) ad (3.2)). 

The third section shows that information theoretic formulations of evolutionary change naturally 

lend themselves to recursive multilevel decompositions that consider that evolution processes 

information on different levels (equation (4.1)). It turns out that the resulting conditional 

descriptive complexities over different levels add up to a total that is equal to the descriptive 

complexity of the evolving individuals (equation (4.2)). One of the practical applications of the 

presented concepts calculates the amount of information processed by the Canadian export 

economy, classified over six taxonomic levels of economic activity. Just like a lion is a cat, 

which is a type of carnivore, which evolves among all mammals, which are types of vertebrates 

of the animal population, this example from economic evolution considers that the export 

product ‘color TV’ (code 7611 of UN SITC, rev.2) evolves within other types of ‘TV receivers’, 

which is part of the higher level type of ‘telecommunication equipment’, which evolves among 

‘machinery equipment’, which is a type of ‘machinery’ that belongs to the population of all 
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‘manufacturing’ products. Fig. 1 shows the varying amounts of descriptive complexities in bits 

produced by evolution over four decades on each of these levels.   

The fourth section explores a variety of applications of the proposed logic to partial and more 

general aspects of evolutionary change (such as natural selection and changes in fitness). For 

example, it turns out that the change in fitness in a stable setting can be expressed as the 

descriptive complexity of the present population from the perspective of the past, plus the 

descriptive complexity of the present from the perspective of the future (equation (5)). This says 

that evolutionary acceleration is equal to present complexity looked at from the past and future. 

The rushed reader can skip the explorations of this fourth section in a first reading without 

prejudice of understanding the final section.  

The final fifths section expands the logic from the first three sections to include the environment. 

What took the form of entropy in the first section, and relative entropy in the general case of the 

second section, now takes the form of mutual information between the evolving system and its 

environment (equations (8.4) and (8.5)). ‘Fit-ness’ attains an intuitive, but formal interpretation 

as the amount of ‘fit’ between the evolving population and its environment. Fitness is related to 

the amount of informational ‘fit’ on a certain level. This amount of mutual information 

represents the emergent quantity that makes the total population fitness on a higher level more 

than the sum of the fitness of its parts on a lower level. Natural corollaries from this way of 

looking at evolution lead to generalizations of two important results from 1956, namely Kelly’s 

bet-hedging strategy (equation (8.6)), and Ashby’s law of requisite variety between an evolving 

population and its environment (equations (9.1) and (9.2)). 
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The concluding discussion reviews the main argument, which is that the expression of 

evolutionary dynamics in terms of informational descriptive complexities leads not only to fresh 

ways of looking at well-known dynamics of evolutionary change, but also to meaningful new 

results. 

Fitness as negative entropy 

We start our explorations with the traditional interpretation of fitness 𝑤 as the factor of 

reproduction or growth, and define the total number of population units 𝑛 at time 𝑡 with 𝑁𝑡, 

resulting in the population fitness: 𝑤 = [
𝑁𝑡+1

𝑁𝑡
]. The units can represent the number of current 

individuals 𝑁𝑡 and future offspring 𝑁𝑡+1; pennies of gamble bets 𝑁𝑡 and payoff 𝑁𝑡+1, etc. We 

start by assuming that each individual 𝑛 is its own unique type (e.g. no two finches have exactly 

the same peak length, so for now we assume all present and future finches to be individual types) 

and that each unique type has the same evolutionary weight, 𝑝(𝑛) =
1

𝑁
 (e.g. one finch represents 

the same population proportion as another finch), which results in a uniform probability mass 

function among them ∑ 𝑝(𝑛𝑡)𝑛𝑡 = 𝑁𝑡 ∗
1

𝑁𝑡
= 1. Without loss of generality, we can represent 

growth factors on a logarithmic scale, which is often referred to as Malthusian fitness (9,24). 

This essentially normalizes fitness at 0 for an unchanging population, log(𝑤 = 1) = 0. For 

example, a logarithm of base 2 represents fitness 𝑤 in terms of the number of population 

doublings at each time step. This rudimentary set up is sufficient to express fitness in terms of 

Shannon entropies (16,18): 
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log(𝑤) = log (
𝑁𝑡+1

𝑁𝑡
) = log(𝑁𝑡+1) − log(𝑁𝑡) = 𝐸𝑡+1[log(𝑁𝑡+1)] − 𝐸𝑡 [log(𝑁𝑡)]

= − ∑ 𝑝(𝑛𝑡+1) log (
1

𝑁𝑡+1
)

𝑛𝑡+1∈ 𝑁𝑡+1

+ ∑ 𝑝(𝑛𝑡) log (
1

𝑁𝑡
)

𝑛𝑡∈ 𝑁𝑡

= 𝐻(𝑁𝑡+1) − 𝐻(𝑁𝑡)         (1.1)  

𝐸𝑡+1[… ] and 𝐸𝑡[… ] stand for the expected values at time 𝑡 + 1 and 𝑡, respectively, and the 

second reformulation makes use of the fact that the expected value of a constant is the constant. 

Equation (1.1) shows that if we assume that each individual of the evolving population has its 

own, uniquely distinguishable type, fitness measures the uncertainty inherent in the future 

population, minus the uncertainty of the present population (both consisting with different 

“alphabets”, or “number of types” in this case, which can be due to minuscular mutations, etc.). 

In the case that mutations that result in many more unique types at step (𝑡 + 1), uncertainty 

increases, and  𝐻(𝑁𝑡+1) ≫ 𝐻(𝑁𝑡) (see equation (1.1)). In the case that evolution leads to the 

survival of one single member at the final equilibrium stage at time 𝑇 (‘survival of the fittest’), 

there is no uncertainty anymore about who of all population members is the chosen one and 

𝐻(𝑁𝑡+1) = 𝐻(𝑁𝑇) = 0.  Therefore, the expression of an evolutionary fitness over the period 

0 → 𝑇 from the initial population at 𝑡 = 0 until the exclusive survival of the fittest at time 𝑇 is: 

log(𝑤0→𝑇) = −𝐻(𝑁𝑡)         (1.2)  

The negativity of entropy (sometimes also referred to as “negentropy” (25, 26)) shows that 

evolution --just like any process of communication (16,18)-- reduces uncertainty. While a 

communication processes reveals a desired symbol of an uncertain alphabet, evolution can be 

understood as a process that reveals the fittest member of a population. The amount of 

uncertainty reduced by evolution is measured by the amount of negative entropy 𝐻(𝑁𝑡).   
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Normally, evolutionary theory does not consider each individual as one unique type with equal 

weight, but aggregates individuals into groups that are distinguishable and justifiable by some 

common criteria called ‘type’ (e.g. a certain group of all ‘long-peaked finches’ and another group 

of all ‘short-peaked finches’), whereas the weight of types change as the population ‘evolves’. 

Groups of a certain type can also be aggregated into even lower level groups of a common 

subtype, leading to a multilevel logic that is essential to evolutionary thought. As shown in this 

article, multilevel representations are a natural part of information theoretic reformulations of 

evolutionary dynamics, which is the reason why we need a scalable representation of levels.  

We define 𝑔𝑙 as a group that joins a certain number of units 𝑛 under a common type. The coarse-

graining is taken on level 𝑙 and 𝐺𝑙 acts as a discrete random variable with a probability mass 

function of types ∑ 𝑝(𝑔𝑙)𝑔𝑙 = 1 (for a more detailed introduction to the notation used in this 

article, please see Supporting Material (S.1)). On the highest level we count with only one group 

(the entire population), 𝑝(𝑔𝑙=0 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) = 1, with population fitness 𝑤(𝑔0) = [
𝑁𝑡+1

𝑁𝑡
] 

(often referred to as �̅� in the nomenclature of evolutionary biology). Each group counts with a 

collective fitness defined as the weighted average fitness of its members on the next lower level: 

𝑤(𝑔𝑙) = ∑ 𝑝(𝑔𝑙+1) ∗𝑔𝑙+1 𝑤(𝑔𝑙+1) = 𝐸[𝑤(𝑔𝑙+1)], its expected value.  

In the case that evolution leads to the survival of one single type at time 𝑇 (‘survival of the fittest 

type’), we get (see Supplementary Material (S.2.1.4)): 

log(𝑤(𝑔𝑙=0
𝑡→𝑇)) = log𝑤(𝑔𝑚𝑎𝑥𝑙=1) − 𝐻(𝑁𝑡)            (2.1) 

whereas 𝑤(𝑔𝑚𝑎𝑥) stands for the highest fitness among all types during the period 𝑡 → 𝑇 (the 

'fittest' individual member of the population). In words, equation (2.1) says that population 
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fitness over the process of evolution until ‘the survival or the fittest type’ is equal to the fitness of 

the fittest type minus the uncertainty that was originally inherent in the initial population.  

Fitness as relative descriptive complexity 

We now generalize the previous logic to the case that evolution has not (yet) settled down at an 

equilibrium of the fittest type and is still ongoing. The natural information theoretic metric for 

out of equilibrium dynamics turns out to be the Kullback-Leibler divergence (17) between the 

future and the present populations (see Supplementary Material (S.1.1) for an illustrative 

example and (S.2.1) for the complete derivation).  

log(𝑤(𝑔𝑙
𝑡)) = ∑ 𝑝(𝑔𝑙+1

𝑡+1) ∗ log (𝑤(𝑔𝑙+1
𝑡) ∗

𝑝(𝑔𝑙+1
𝑡)

𝑝(𝑔𝑙+1
𝑡+1)

)

𝑔𝑙+1
𝑡+1

= ∑ 𝑝(𝑔𝑙+1
𝑡+1) log(𝑤(𝑔𝑙+1

𝑡))

𝑔𝑙+1
𝑡+1

− ∑ 𝑝(𝑔𝑙+1
𝑡+1) log (

𝑝(𝑔𝑙+1
𝑡+1)

𝑝(𝑔𝑙+1
𝑡)
)

𝑔𝑙+1
𝑡+1

= 𝐸𝑡+1[log𝑤(𝑔𝑙+1
𝑡)] − 𝐷𝐾𝐿(𝑃

𝑡+1||𝑃𝑡)          (3.1) 

log(𝑤(𝑔𝑙)) =  𝐸
𝑡   [log𝑤(𝑔𝑙+1)] + 𝐷𝐾𝐿(𝑃

𝑡‖𝑃𝑡+1)           (3.2)  

The involved reformulation employs a reversed form what is known as the ‘replicator equation’ 

(27): 𝑝𝑡+1 = 𝑝𝑡 ∗
𝑤

𝐸[𝑤]
 (see Supplementary Material (S.2.1)). 𝐷𝐾𝐿 is also known as relative 

entropy (18) and is an asymmetric measure of divergence that quantifies the directed increase in 

descriptive complexity if the distribution 𝑃𝑡 is encoded with the optimized code of the 

distribution 𝑃𝑡+1 or vice versa (for most cases with 𝐷𝐾𝐿(𝑃
𝑡+1‖𝑃𝑡) ≠ 𝐷𝐾𝐿(𝑃

𝑡‖𝑃𝑡+1)). For 

example, the optimal code for the distribution 𝑃𝑡+1 has average description length of 𝐻(𝑃𝑡+1), 

but encoding 𝑃𝑡+1 with the optimal code for 𝑃𝑡 increases the descriptive complexity by 

𝐷𝐾𝐿(𝑃
𝑡+1‖𝑃𝑡). The sum of 𝐻(𝑃𝑡+1) + 𝐷(𝑃𝑡+1‖𝑃𝑡) is the so-called cross-entropy 𝐻(𝑃𝑡+1, 𝑃𝑡), 
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which (assuming logarithm of base 2) is the descriptive complexity in the number of bits 

required to encode the updated population with a code based on the original population. Thus, 

𝐷𝐾𝐿, such as 𝐻, is a measure of uncertainty and is always positive (result of the concavity of the 

logarithmic function (18; p.28)).  

In words equation (3.1) says that current population fitness is equal to the average fitness of the 

future’s individuals, minus the uncertainty of the future population at time 𝑡 + 1 when looked at 

from the perspective of the present at time 𝑡. In this case, the relative entropy −𝐷𝐾𝐿 takes the 

same form as the absolute entropy 𝐻 from equations (1.2) - (2.1). Equation (3.2) states that 

current population fitness is equal to the average fitness of the current individuals at time 𝑡, plus 

the uncertainty still to be exploited by the ongoing evolutionary change when looking at the 

present from the perspective of the uncertain future at 𝑡 + 1. Since 𝐷𝐾𝐿 ≥ 0, the formulation of 

equation (3.2) also gives us a formalization of multilevel emergence, whereas the total is more 

than the (weighted) sum of its parts: log(𝑤(𝑔𝑙)) ≥ ∑𝑝(𝑔𝑙+1
𝑡) ∗ [log𝑤(𝑔𝑙+1)]. In words, the 

total population fitness on the higher level 𝑙 is more than the sum of the fitness of its members on 

the lower level 𝑙 + 1. How much more? Exactly 𝐷𝐾𝐿(𝑃
𝑡‖𝑃𝑡+1) more. Thus, multilevel 

emergence can be quantified in terms of the involved relative uncertainty. In mathematical terms, 

this result quantifies the inequality involved in the logarithmic case of Jensen’s inequality (28): 

log(E[𝑤(𝑔)]) ≥  E[log(𝑤(𝑔))]. 

Multilevel evolution 

We can expand this two level logic to a multilevel logic. Just like biological life is traditionally 

classified into eight major taxonomic ranks (domain, kingdom, phylum, class, order, family, 

genus, species) (29), an economy consists of economic sectors, industries, divisions, product 
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groups, and products (30-32).  Any such taxonomy assumes that a certain type at level 𝑙 = 1 

consists of an underlying distribution of subtypes, each with a certain distribution of subtype 

fitness on the next lower level 𝑙 = 2. As such, we can structure a population into groups by fine-

graining types into subtypes, resulting in a multilevel logic over different levels from the highest 

level population level 𝑙 = 0, until the lowest most fine-grained level permitted by the database, 

denoted by 𝑙 = 𝐿, and therefore:  𝑙 = {0,1,2…𝐿}. The setup of equation (2.1), (3.1) or (3.2) 

reveals a recursive multilevel logic whereas we can decompose log(𝑤(𝑔𝑙+1)) on the right hand 

side, with the same logic we decomposed log(𝑤(𝑔𝑙)) on the left hand side (much in the sense of 

Price’s well-known multilevel decomposition of evolutionary change (33,34)). The following 

notation represents the fact that the lower level group is nested within the higher level type by a 

reversed slash ′ \ ′, whereas the proportions of the types are normalized on the higher level to 

always sum up to 1, just like when working with conditional probabilities (35): 𝑝(𝑔𝑙=0) =

1;∑ 𝑝(𝑔𝑙=1) = ∑𝑝(𝑔𝑙=1\𝑔𝑙=0) = 1; ∑ 𝑝(𝑔𝑙=2\𝑔𝑙=1,0) = 1. For example, decomposing the case 

of equation (3.2) into three levels (population: 𝑙 = 0; types: 𝑙 = 1; individuals 𝑛: 𝑙 = 2 = 𝐿), we 

get: 
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log𝑤(𝑔𝑙=0) = ∑ 𝑝(𝑔𝑙=1){log𝑤(𝑔𝑙=1)}

𝑔𝑙=1

+ 𝐷𝐾𝐿(𝑃(𝑔𝑙=1)
𝑡‖𝑃(𝑔𝑙=1)

𝑡+1)

= ∑ 𝑝(𝑔𝑙=1) {∑ 𝑝(𝑔𝑙=2\𝑔𝑙=1) log(𝑤(𝑔𝑙=2))

𝑔𝑙=2𝑔𝑙=1

+∑ 𝑝(𝑔𝑙=2\𝑔𝑙=1)
𝑡 log(

𝑝(𝑔𝑙=2\𝑔𝑙=1
𝑡)

𝑝(𝑔𝑙=2\𝑔𝑙=1
𝑡+1)

𝑤(𝑔𝑙=1))

𝑔𝑙=2

} 

+ 𝐷𝐾𝐿(𝑃(𝑔𝑙=1)
𝑡‖𝑃(𝑔𝑙=1)

𝑡+1)

= ∑ 𝑝(𝑔𝑙=2)
𝑡 log(𝑤(𝑔𝑙=2))

𝑔𝑙=2

+ 𝐷𝐾𝐿(𝑃(𝑔𝑙=2|𝑔𝑙=1)
𝑡‖𝑃(𝑔𝑙=2|𝑔𝑙=1)

𝑡+1)

+ 𝐷𝐾𝐿(𝑃(𝑔𝑙=1)
𝑡‖𝑃(𝑔𝑙=1)

𝑡+1)                    (4.1)

= ∑ 𝑝(𝑔𝐿=2)
𝑡 log(𝑤(𝑔𝐿=2))

𝑔𝐿=2

+ 𝐷𝐾𝐿(𝑃(𝑔𝐿=2)
𝑡‖𝑃(𝑔𝐿=2)

𝑡+1)               (4.2)     

The step from equation (4.1) to (4.2) makes use of the chain rule for relative entropy ((18); p. 24; 

see also (35)). We can always follow this logic through from the highest level to the lowest level 

𝑃(𝑔𝐿) of any multilevel population structure. The sum of the conditional relative entropies over 

all levels (4.1) is equal to the relative entropy on the lowest, most fine-grained level (4.2). The 

form of equation (4.1) expresses evolutionary fitness as a sum of relative entropies from different 

levels (their contribution may vary at each level) and a residual term which cannot be further 

decomposed on basis of the available data. Equation (4.2) has the same form as equation as 

equation (3.2), just on the lowest level of fine-graining 𝐿 permitted by the database. In practice, 

the equality between equations (4.1) and (4.2) allows for a useful shortcut when calculating the 

total amount of information processed by an evolutionary multilevel dynamic. It is 

straightforward to apply this chain rule logic to more than three levels (with maximally log2(𝑁) 
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levels, since the smallest possible group size at each level is 2), as well as to most of the 

equations presented in this article (i.e. equations (2.1), (3.1), (7.2), (8.3-8.6)).   

Fig. 1 provides an empirical application this logic to the evolution of exported products (in US$) 

(Fig. 1a); and the evolution of the number of views of online news video clips (Fig. 1b). It shows 

over which time period which levels adds or subtracts how much descriptive complexity 

(calculated in bits). Both figures show that relative entropy tends to be larger at lower levels, 

which is due to the greater shifts in population constellations on less aggregate levels, but at the 

same time, Fig. 1b makes clear this is not inevitably the case. Fig. 1b contrasts the descriptive 

complexity measured from the present, 𝐷𝐾𝐿(𝑃
𝑡+1||𝑃𝑡) (striped: multilevel form of equation 

(3.1)), with the descriptive complexity measured from the future, 𝐷𝐾𝐿(𝑃
𝑡||𝑃𝑡+1) (filled: 

multilevel form of equation (3.2)). It shows that 𝐷𝐾𝐿 stays at the same order of magnitude among 

levels, while the round ‘zoomed-in inserts’ confirm the asymmetry of the 𝐷𝐾𝐿 metric within the 

respective order of magnitude. 

Exploring the extremes of these kinds of decompositions, it turns out that population fitness can 

be completely decomposed into descriptive complexities in the form of relative entropies if the 

weighted geometric mean fitness of its types is 1: ∏ 𝑤(𝑔𝐿)
𝑝(𝑔𝐿)

𝑔𝐿 = 1 =>

 ∑ 𝑝(𝑔𝐿){log𝑤(𝑔𝐿)}𝑔𝐿 = 0 and (taking the form of equation (4.2)): 

log𝑤(𝑔𝑙=0) = 𝐷𝐾𝐿(𝑃(𝑔𝐿)
𝑡‖𝑃(𝑔𝐿)

𝑡+1)            (4.3) 

In the case that 𝑃(𝑔𝐿) is uniform (e.g. all equally weighted individuals, with 𝑝(𝑔𝐿) = 𝑝(𝑛) =
1

𝑁
), 

this implies that the combinatory potentials of present and future generations are equal: ∏ 𝑛𝑡𝑛𝑡 =

∏ 𝑛𝑡+1𝑛𝑡+1  (given that 𝑤(𝑔𝐿) =
𝑛𝑡+1

𝑛𝑡
, with 𝑛 being the number of units of a certain group 𝑔𝐿, 
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solve for ∑
1

𝑁𝑡
{log (

𝑛𝑡+1

𝑛𝑡
)} = 0). On the other extreme, it shows that evolution does not process 

information if there is no change in the population constellation: with 𝑤(𝑔𝑙) = constant for all 

types, 𝑃𝑡 = 𝑃𝑡+1, and 𝐷𝐾𝐿(𝑃
𝑡||𝑃𝑡) = 0. This underlines the argument that the parameter that 

matters in evolutionary dynamics is not the passing of time per se, but perceivable change of the 

population constellation (compare the assumption of (14), with the more sophisticated argument 

made in (2,3)). 

Further information-theoretic reformulations 

This section shows that the expression of fitness in information theoretic terms can be expanded 

to look at a variety of specific aspects of evolution, such as natural selection, and at more general 

aspects, such as the change in fitness or long-term fitness.  

We start by asking about the change ∆ in fitness (such as done Price’s famous equation (33,34)). 

Equation (5) shows that for stable individual fitness on the lower level, 𝑤(𝑔𝑙=1
𝑡−1) = 𝑤(𝑔𝑙=1

𝑡), 

the change in population fitness on the higher level is equal to the descriptive complexity of the 

present system when looked at it from the perspective of the past, plus the descriptive complexity 

if the present system when looked at it from per perspective of the future (see also (S.2.3.2)): 

log𝑤(𝑔𝑙=0
𝑡) − log𝑤(𝑔𝑙=0

𝑡−1) = log
𝑤(𝑔𝑙=0

𝑡)

𝑤(𝑔𝑙=0𝑡−1)
= 𝐷𝐾𝐿(𝑃

𝑡‖𝑃𝑡−1) + 𝐷𝐾𝐿(𝑃
𝑡‖𝑃𝑡+1)           (5) 

This throws a new light on a well-known concept. In a stable setting we can express the concept 

of changing fitness entirely in terms of the descriptive complexities of the present moment 

(looked at from the perspectives of the past and future). The positivity of 𝐷𝐾𝐿 ((18); p.28) 

confirms an inevitable positive acceleration of population growth in a stable setting. 
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This is in line with Fisher’s fundamental theorem of natural selection, which measures natural 

selection in terms of variance in fitness (9-12), a term that is also always positive. Same as 

variance, relative entropy measures diversity in fitness: the more diversity in 𝑤(𝑔𝑙), the more 

distinct 𝑃(𝑔𝑙)
𝑡and 𝑃(𝑔𝑙)

𝑡+1, and the larger 𝐷𝐾𝐿. The symmetric symmetric version 𝐷𝐾𝐿 (Jeffreys 

divergence: 𝐽(𝑃𝑡, 𝑃𝑡+1) = 𝐷𝐾𝐿(𝑃
𝑡‖𝑃𝑡+1) + 𝐷𝐾𝐿(𝑃

𝑡+1‖𝑃𝑡) (36)) has a direct relationship to the 

variance in fitness, which can be shown by the well-known Price equation (33,34). The 

following replaces the freely selectable parameter 𝑧𝑖 of Price’s setup with logarithmic fitness 

log(𝑤(𝑔𝑙)) and asks for the change in log fitness (for the derivation see S2).  

𝑤(𝑔0)∆𝑧 = 𝐶𝑜𝑣(𝑤(𝑔1), 𝑧𝑖) + 𝐸[𝑤(𝑔1) ∗ ∆𝑧𝑖]           (6.1;  𝑃𝑟𝑖𝑐𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛)  

Insert 𝑧𝑖 = log(𝑤(𝑔𝑙=1)) and ∆𝑧 = (log𝑤(𝑔𝑙=1
𝑡+1) − log𝑤(𝑔𝑙=1

𝑡)) = log𝑤 (
𝑔𝑙=1

𝑡+1

𝑔𝑙=1
𝑡 )  

𝐶𝑜𝑣(𝑤(𝑔1), log𝑤(𝑔1
𝑡))

𝑤(𝑔0)
= 𝐷𝐾𝐿(𝑃(𝑔1)

𝑡+1‖𝑃(𝑔1)
𝑡) + 𝐷𝐾𝐿(𝑃(𝑔1)

𝑡‖𝑃(𝑔1)
𝑡+1)

= 𝐽(𝑃(𝑔1)
𝑡, 𝑃(𝑔1)

𝑡+1)             (6.2) 

Frank (3) had previously proposed a proportionality between natural selection's 
𝑉𝐴𝑅(𝑤(𝑔1))

𝑤(𝑔0)
 and 

Jeffreys divergence. Equation (6.2) fine-tunes this result. While 
𝑉𝐴𝑅(𝑤(𝑔1))

𝑤(𝑔0)
=

𝐶𝑜𝑣(𝑤(𝑔1),𝑤(𝑔1))

𝑤(𝑔0)
, it 

shows that  𝐽(𝑃(𝑔1)
𝑡, 𝑃(𝑔1)

𝑡+1) =
𝐶𝑜𝑣(𝑤(𝑔1),log𝑤(𝑔1

𝑡))

𝑤(𝑔0)
. The monotone increasing nature of the 

logarithmic function leads to the proposed proportionality, as well as to the fact that 

𝐶𝑜𝑣(𝑤(𝑔1),log𝑤(𝑔1
𝑡))

𝑤(𝑔0)
, just like 𝐽 = 𝐷𝐾𝐿 + 𝐷𝐾𝐿, is always positive ((18); p.28), just like the variance 

in fitness in Fisher’s fundamental theorem.  
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Supplementary Material (S.2.3) explores other possible decompositions that arise from the logic 

presented. Several of them might merely be playful mathematical equivalences. Which of these 

possible reformulations turn out to be useful to obtain insights into the dynamics of evolution? 

One thing we know about evolution is that it takes a long time, so we could explore what we get 

when decomposing long term growth rates from generation 𝑡, over 𝑡 + 1, to generation 𝑡 + 2.  

log𝑤(𝑔𝑙
𝑡,𝑡+1) = log(𝑤(𝑔𝑙

𝑡) ∗ 𝑤(𝑔𝑙
𝑡+1))                 (7.1) 

= 𝐸𝑡+1[log(𝑤(𝑔𝑙+1
𝑡) ∗ 𝑤(𝑔𝑙+1

𝑡+1))] − 𝐷𝐾𝐿(𝑃𝑙+1
𝑡+1‖𝑃𝑙+1

𝑡) + 𝐷𝐾𝐿(𝑃𝑙+1
𝑡+1‖𝑃𝑙+1

𝑡+2)      (7.2) 

In words equation (7.2) says that the long-term population fitness over two periods is equal to the 

average fitness of the types, minus the descriptive complexity looked at from the original starting 

state, plus the descriptive complexity looked at from the final state. In this sense, equation (7.2) 

evaluates fitness at an intermediate point of a partitioned dynamic at which some uncertainty of 

the original state has already been resolved (−𝐷𝐾𝐿), while some is still pending (+𝐷𝐾𝐿).  

Applying a recursive logic of multilevel decomposition in the spirit of equation (4) to equation 

(7.2), Fig. 2 shows the evolution of US$ fundraised by micro-entrepreneurs structured over seven 

levels. It turns out that in this empirical case, [𝐷𝐾𝐿(𝑃
𝑡+1‖𝑃𝑡+2) − 𝐷𝐾𝐿(𝑃

𝑡+1‖𝑃𝑡)] ≤ 0. As 

shown in Supplementary Material (S.2.4), this implies that there is a sustainable positive 

correlation between current fitness and long-term fitness, 𝐶𝑜𝑣(𝑤(𝑔𝑡), 𝑤(𝑔𝑡,𝑡+1)) ≥ 0. This 

positive covariance between current and long-term fitness indicates that selection forces of the 

present work into the same direction of population change than the long-term forces of selection. 

This means that if the solved uncertainty 𝐷𝐾𝐿(𝑃
𝑡+1‖𝑃𝑡) is larger than the remaining uncertainty 

𝐷𝐾𝐿(𝑃
𝑡+1‖𝑃𝑡+2) within a long-term dynamic from 𝑡 to 𝑡 + 2, current selection is sustainable, 

because current fitness 𝑤(𝑔𝑡) is in line with the direction of long term fitness 𝑤(𝑔𝑡,𝑡+1). 
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Sustainability of fitness patterns can be meaningfully expressed in terms of descriptive 

complexities of the population. The other way around, if the covariance between the current and 

long term growth rate is negative, 𝐶𝑜𝑣(𝑤(𝑔𝑡),𝑤(𝑔𝑡,𝑡+1)) ≤ 0, which means that current 

selection and long-term selection work in opposing directions, it follows that the descriptive 

complexity of the present (𝑡 + 1) when looked at from the past (𝑡) is smaller than the 

descriptive complexity when looked at from the future (𝑡 + 2): 𝐷𝐾𝐿(𝑃
𝑡+1‖𝑃𝑡+2) −

𝐷𝐾𝐿(𝑃
𝑡+1‖𝑃𝑡) ≥ 0 (see (S.2.4.3)). As a third case, if the descriptive complexities of the present 

from the perspective of the past and future are equal, 𝐷𝐾𝐿(𝑃
𝑡+1‖𝑃𝑡+2) = 𝐷𝐾𝐿(𝑃

𝑡+1‖𝑃𝑡), it 

follows that 𝑃𝑡 = 𝑃𝑡+2, which leads to the intuitive implication that either no evolution takes 

place on this level (no population change), or that selection in the second sub-period reverses 

previous selection, returning the population constellation at time (𝑡 + 2) to the original state 𝑡 

(see (S.2.4.5)). Fig. 2 shows that the term is much closer to 0 in the second period of the 

empirical example. This makes sense, since it is to be expected that much less population change 

takes place during the later period in which fundraising efforts are already consolidated 

(successful entrepreneurs get closer or achieved their fundraising goal, unsuccessful ones 

stagnate).  

Another interesting measure of sustainability of evolutionary forces is the covariance between 

present and future fitness: 𝐶𝑜𝑣(𝑤(𝑔𝑡),𝑤(𝑔𝑡+1)). This asks if the fittest types of the past are on 

average also the fittest types of the future. For example, this matters when evaluating the 

selection effectiveness of economic market forces (37). Derivation (S.2.5) shows that if present 

and future selection work into the same direction of change, 𝐶𝑜𝑣(𝑤(𝑔𝑡),𝑤(𝑔𝑡+1)) ≥ 0, it 

follows that the long-term descriptive complexity is larger than the short term descriptive 

complexity: 𝐷𝐾𝐿(𝑃
𝑡+2‖𝑃𝑡) ≥ 𝐷𝐾𝐿(𝑃

𝑡+2‖𝑃𝑡+1) and 𝐷𝐾𝐿(𝑃
𝑡‖𝑃𝑡+2) ≥ 𝐷𝐾𝐿(𝑃

𝑡‖𝑃𝑡+1). Likewise, 
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if short term relative entropy is larger than long term relative entropy, 𝐷𝐾𝐿(𝑃
𝑡+2‖𝑃𝑡) ≤

𝐷𝐾𝐿(𝑃
𝑡+2‖𝑃𝑡+1), it follows that current and future forces of selection work in opposing direction 

on the change of a population constellation: 𝐶𝑜𝑣(𝑤(𝑔𝑡),𝑤(𝑔𝑡+1)) ≤ 0. As shown in (S.2.6), for 

most cases this bound can even be tightened to the question if long-term descriptive complexity 

is larger or smaller than the sum of the included short-term complexities: {𝐷𝐾𝐿(𝑃
𝑡+2‖𝑃𝑡)} ≥

𝑜𝑟 ≤ {[𝐷𝐾𝐿(𝑃
𝑡+1‖𝑃𝑡) + 𝐷𝐾𝐿(𝑃

𝑡+2‖𝑃𝑡+1)]}. This shows that descriptive complexities do not 

fulfill the traditional triangle inequality, since the number of bits processed over a longer period 

can be larger or smaller than the sum of the number of bits processed during the constituent sub-

periods.  

Fitness as information between the system and its environment 

The foregoing information theoretic decompositions have focused exclusively on quantifying an 

evolving population in terms of its descriptive complexities (such as measured in bits), and have 

not considered the environment so far. It seems intuitive that evolution should process 

information between the evolving population and its environment. It is straightforward to derive 

this connection from our previous explorations. This can be seen when assigning some kind of 

environmental distribution to the different short-term periods of 𝑤(𝑔𝑙
𝑡) and 𝑤(𝑔𝑙

𝑡+1) in 

equation (7.1). What matters in order to obtain an informational value is that these different 

periods have distinguishable fitness for different types: information “is a difference which makes 

a difference” (38). Therefore, one justifiable identification of meaningful environmental 

conditions consists in identifying periods in which the different types have different 

constellations of relative fitness (i.e. in one period one type grows faster than the average, while 

in the other period the other type grows faster). These distinguishable growth patterns then tell us 

something about differentiable environmental circumstances that affect the population. For 
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example, if in certain periods conifers thrive faster than flowering orchids, it could be inferred 

that the environment favors the former during these periods (e.g. the climate could be rather cool 

than hot), and vice versa. 

Differential growth patterns allow us therefore to characterize a long-term period into a number 

of distinct and recurrently appearing environmental states 𝑒 (in this case two distinct states). In 

the least informative case, all states occur with the same likelihood (highest entropy state of the 

environment). In the most informative case, one state explicitly follows the next (no 

(conditional) uncertainty), leading to a deterministic and learnable algorithm in time (37), such 

as in a periodic orbit (e.g. day and night). In the in-between case, each state 𝑒 appears with a 

non-uniform probability, without an exact sequence (such as a random walk of bull or bear 

markets; rainy, cloudy and sunny days, etc.). Even so the informational potential of the latter 

case is lower (since transitions are not deterministic but probabilistic), the environment still 

displays a patterns that contains information that can be exploited by the evolving population. 

The population fitness during a particular environmental state 𝑒 is its expected average fitness 

(over all types) given (conditioned on) the environmental state 𝑒: 𝑤(𝑔0̅̅ ̅|𝑒). The long term 

logarithmic population fitness over 𝑇 periods can then be partitioned in time into the product of 

the growth factors in the distinct environmental states 𝑒, each appearing in its proportion 𝑝(𝑒) 

(for details see Supporting Material (S.2.7), i.e. (S.2.7.2)). For example, the overall growth rate 

of a forest over the entire year from 0 to 𝑇 is the product of the forests growth during the share of 

sunny days 𝑝(𝑒 = 𝑠𝑢𝑛𝑛𝑦), and during the share of days without sun 𝑝(𝑒 = 𝑛𝑜 − 𝑠𝑢𝑛), during 

the year 0 → 𝑇.   

log(𝑤(𝑔0
0→𝑇)) = log (∏ 𝑤(𝑔0̅̅ ̅|𝑒)

𝑝(𝑒)∗𝑇

𝑒
) =∑log(𝑤(𝑔0̅̅ ̅|𝑒)

𝑝(𝑒)∗𝑇)

𝑒

           (8.1) 



20 
 

log𝑤(𝑔0
0→𝑇)

1
𝑇 = log𝑤(𝑔0̿̿ ̿) =∑log(𝑤(𝑔0̅̅ ̅|𝑒)

𝑝(𝑒))

𝑒

 

In this notation the single-bar emphasizes the (arithmetic) ‘space-average’ over the different 

population members, while the double-bar emphasizes the additional (geometric) ‘time-average’ 

over the observed period. Following the formerly presented logic from above (i.e. (S.2.3)), we 

can expand and reformulate this average population fitness log𝑤(𝑔0̿̿ ̿) in space and time: 

log𝑤(𝑔0̿̿ ̿) = ∑𝑝(𝑔1
𝑡+1|𝑒) ∗ log(𝑤(𝑔0̅̅ ̅|𝑒)

𝑝(𝑒))

𝑒

=∑𝑝(𝑔1𝑡+1̅̅ ̅̅ ̅̅ ̅|𝑒) ∗ 𝑝(𝑒) ∗ log𝑤(𝑔0̅̅ ̅|𝑒)

𝑒

=∑𝑝(𝑔1𝑡+1̅̅ ̅̅ ̅̅ ̅|𝑒) ∗ 𝑝(𝑒) ∗ log(
𝑝(𝑒)

𝑝(𝑒)
∗
𝑝(𝑔1𝑡̅̅ ̅̅ |𝑒)

𝑝(𝑔1𝑡+1̅̅ ̅̅ ̅̅ ̅|𝑒)
𝑤(𝑔1̅̅ ̅, 𝑒))

𝑒

   (8.2)

= −∑𝑝(𝑔1𝑡+1̅̅ ̅̅ ̅̅ ̅, 𝑒) ∗ log (
𝑝(𝑔1𝑡+1̅̅ ̅̅ ̅̅ ̅, 𝑒)

𝑝(𝑔1𝑡̅̅ ̅̅ , 𝑒)
)

𝑒

+∑𝑝(𝑔1𝑡+1̅̅ ̅̅ ̅̅ ̅, 𝑒) ∗ log(𝑤(𝑔1̅̅ ̅, 𝑒))

𝑒

 

= 𝐸𝑡+1,𝑒[log𝑤(𝑔1̅̅ ̅, 𝑒)] − 𝐷𝐾𝐿(𝑃(𝑔1𝑡+1̅̅ ̅̅ ̅̅ ̅, 𝑒)‖𝑃(𝑔1𝑡̅̅ ̅̅ , 𝑒))           (8.3) 

This brings the decomposition into the familiar form of equation (3.1), but this time also 

considering the informational pattern of the environment in a joint distribution between the 

population and the environment, e.g. 𝑝(𝑔1𝑡̅̅ ̅̅ , 𝑒). As an illustrative application of equation (8.3), 

Supplementary Material (S.2.7) shows how the evolution of USA’s export economy during the 

period between 1979 and 2000 processed 0.0007 bits of joint relative entropy on the first level of 

fine-graining. This showcases how equation (8.3) can readily be applied to practical cases. 

It is worthwhile noting that if the population at the population is independent from the 

environment (which is a reasonable assumption under certain circumstances), the joint relative 

entropy 𝐷𝐾𝐿 turns into Shannon’s much celebrated metric of mutual information (16, 18) 
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between the environment and the future state of the population; i.e. if 𝑝(𝑔1
𝑡̅̅ ̅̅ , 𝑒) = 𝑝(𝑔1

𝑡+1̅̅ ̅̅ ̅̅ ̅) ∗

𝑝(𝑒)), it follows that 𝐷𝐾𝐿(𝑃(𝑔1𝑡+1̅̅ ̅̅ ̅̅ ̅, 𝑒)‖𝑃(𝑔1𝑡̅̅ ̅̅ , 𝑒)) = ∑ 𝑝(𝑔1
𝑡+1, 𝑒) log (

𝑝(𝑔1𝑡+1
̅̅ ̅̅ ̅̅ ̅̅ ,𝑒)

𝑝(𝑔1𝑡+1
̅̅ ̅̅ ̅̅ ̅̅ )∗𝑝(�̅�)

)𝑒 =

𝐼(𝐺𝑡+1̅̅ ̅̅ ̅̅ ; 𝐸𝑛𝑣).  

log𝑤(𝑔0̿̿ ̿) = 𝐸𝑡+1,𝑒[log𝑤(𝑔1̅̅ ̅, 𝑒)] − 𝐼(𝐺𝑡+1̅̅ ̅̅ ̅̅ ; 𝐸𝑛𝑣)            (8.4) 

Similarly, the mutual information between the environment and the present population emerges 

naturally from the equation. This is always the case at the final end state of an evolutionary 

process in which only the fittest has survived: 𝑝(𝑔1𝑡=𝑇̅̅ ̅̅ ̅̅ ̅, 𝑒) = 𝑝(𝑔1𝑡=𝑇̅̅ ̅̅ ̅̅ ̅ = 𝑓𝑖𝑡𝑡𝑒𝑠𝑡) ∗ 𝑝(𝑒) = 1 ∗

𝑝(𝑒).  

log𝑤(𝑔0̿̿ ̿) = 𝐸𝑡,𝑒[log𝑤(𝑔1̅̅ ̅, 𝑒)] + 𝐼(𝐺𝑡̅̅ ̅; 𝐸𝑛𝑣)            (8.5) 

Equations (8.4) and (8.5) are the conceptual equivalent of equations (3.1) and (3.2). Equation 

(8.5) shows that mutual information between the current population and its environment adds to 

current population fitness on a certain level. Fitness obtains an intuitive explanation as the 

amount of mutual information ‘fit’ between the evolving system and its environment. The 

amount of mutual information also quantifies the amount of level-specific emergence involved in 

an evolutionary process: the total log𝑤(𝑔0̿̿ ̿) is exactly 𝐼(𝐺𝑡̅̅ ̅; 𝐸𝑛𝑣) more than the (weighted) sum 

of its parts.  

We could now assume an extreme case of relative fitness in which each environmental state has 

only one surviving type with superior fitness, 𝑤({𝑔1 = 𝑓𝑖𝑡𝑡𝑒𝑠𝑡}|𝑒) > 0, while in this 

environmental state all other types die out with 𝑤({𝑔1 = 𝑢𝑛𝑓𝑖𝑡}|𝑒) = 0. Only one type fits the 

particular environment. In this case the fittest type represents the entire population after 

updating, 𝑝({𝑔1
𝑡+1 = 𝑓𝑖𝑡𝑡𝑒𝑠𝑡}|𝑒) = 1, and equation (8.2) simplifies to:   
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log𝑤(𝑔0̿̿ ̿) = 𝐸𝑡+1,𝑒[log𝑤(𝑔1̅̅ ̅, 𝑒)] −∑1 ∗ 𝑝(𝑒) ∗ log (
𝑝(𝑒) ∗ 1

𝑝(𝑒) ∗ 𝑝(𝑔1𝑡̅̅ ̅̅ |𝑒)
)

𝑒

= 𝐸𝑡+1,𝑒[log𝑤(𝑔1̅̅ ̅, 𝑒)] +∑𝑝(𝑒) log 𝑝(𝑒)

𝑒

−∑𝑝(𝑒) log
𝑝(𝑒)

𝑝(𝑔1𝑡̅̅ ̅̅ |𝑒)
𝑒

= 𝐸𝑡+1,𝑒[log𝑤(𝑔1̅̅ ̅, 𝑒)] − 𝐻(𝐸𝑛𝑣) − 𝐷𝐾𝐿(𝑃(𝑒)‖𝑃(𝑔1𝑡̅̅ ̅̅ |𝑒))          (8.6) 

Equation (8.6) is a well-known result derived by Kelly in 1956 (39). Since both 𝐻 and 𝐷𝐾𝐿 are 

always positive, it says that the attainable average population fitness is reduced by the level of 

uncertainty inherent in the environment, 𝐻(𝐸𝑛𝑣), as well as by the distance of the distribution of 

the evolving population from its environment, 𝐷𝐾𝐿. Among other things, this leads to the 

celebrated result in portfolio theory that a proportional bet hedging strategy maximizes 

population fitness (with 𝑃(𝑒) = 𝑃(𝑔1𝑡̅̅ ̅̅ |𝑒) and therefore 𝐷𝐾𝐿 = 0, for related work see also (5-

7)). As such, equations (8.3) and (8.4) are generalizations of Kelly’s special case result (39), 

which also holds for the less restrictive case with variety of growth factors among types (for 

more recent results on Kelly’s criteria see (5-7,40-43)). 

It is important to notice that a multilevel decomposition of fitness on a lower level implies that 

we identify lower level types with distinguishable fitness.  This also implies the existence of 

distinct lower environmental states within the higher level environmental states that interact with 

this more fine-grained level. For example, while all kinds of flowering plants thrive in a sunny 

environment, Fig. 3 supposes that different kinds of flowering plants thrive more in sunny days 

that are windy, while others have superior relative fitness on sunny days that are burning hot. If 

more fine-grained types have distinguishable relative fitness within the coarse-grained 

environmental state, a more fine-grained distinction of the environment becomes a requisite in 

order to calculate the conditional fitness values on the next lower level. The number of 
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distinguishable environmental states that affect evolutionary dynamics grows with the number of 

relative fitness patterns that are identifiable from more fine-grained distinctions of types. This 

implies that the number of distinguishable environmental states conditioned on the superiority of 

a specific type, or—the other way around—distinguishable types conditioned on an 

environmental state, grows with more detailed levels of fine-graining:  

|(𝑒𝑙|𝑔𝑙)| < |(𝑒𝑙+1|𝑔𝑙+1)|             (9.1) 

|(𝑔𝑙|𝑒𝑙)| < |(𝑔𝑙+1|𝑒𝑙+1)|             (9.2) 

This leads to a fresh look at Ashby’s law of requisite variety (44). The level of fine-graining of 

distinguishable environmental states in time, and the number of distinguishable types of an 

evolving population in space go hand in hand. The exploitation of environmental variety requires 

type variety, and type variety implies that there must be discernable environmental variety. This 

becomes very clear in the extreme case of Kelly’s optimized bet-hedging strategy. In this 

extreme case, there is only one optimized type for each environmental state, leading to a one-to-

one relation between the number of types and discernable environmental states. The argument 

presented here generalizes this logic of space-time fine-graining (for an illustrative example, see 

Fig. 3; for an empirical example see (S.2.7)). 

Discussion 

Until now, evolutionary dynamics have mainly been analyzed with the help of differential 

equations (27) or in terms of variances and covariances (33,34). Why the need to reformulate 

evolutionary dynamics in terms of information theory? For one, it formalizes enduring notions 

that link evolution, informational complexity, and ideas like ‘negentropy’ (1,25). We derived an 

intuitive definition of ‘fit-ness’ as an informational ‘fit’ between the evolving population and its 
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environment. This provides new meaning to ‘fit-ness’. Besides, it has long been suggested that 

“discoveries might be explained as the outcome of the process of switching the problem 

representation to a different ontological category” (45; p. 430; also 46,47). In this initial 

exploration we started by reformulating longstanding concepts of evolutionary theory in terms of 

information theory, including Fisher’s fundamental theorem of natural selection, the Price 

equation, the role of the reversed replicator equation, multilevel emergence, and evolutionary 

sustainability. This led to new conceptualizations of well-known phenomena, such as the 

definition of change in fitness in a stable setting as the sum of descriptive complexities of the 

present from the perspectives of the past and future (equation (5)), and led to the generalization 

of Kelly’s bet-hedging criterion, and a space-time version of Ashby’s law of requisite variety. 

These insightful results underline the urgency to take a fresh look at all kinds of evolutionary 

dynamics.  

One ongoing discussion in which information theoretic approaches to evolution have much 

potential is the the question about the adequate carrier of information (i.e. the adequate levels of 

selection (48-50)). The variables chosen to define levels and their types influence the resulting 

constellations of fitness. Information theory is an adequate language to analyze the choice of 

variables and the amount of information they contain. For example, Fig. 1A classified the 

evolving population according to variables defined by the United Nations Standard International 

Trade Classification (SITC, rev.2), but who says that evolution cares about this kind of 

classification? What exactly are the levels and groups of selection that process information? The 

presented derivations provide a foundation to tackle such and other questions with the help of a 

new set of well-understood analytical tools. 
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Fig. 1.  Fitness is incrementally decomposed into relative information over multiple levels. (A), 

Equation (3.2) decomposition of 𝑙𝑜𝑔2 fitness of international export volume of 512 Canadian 

products over 5 levels according to the official multilevel Standard International Trade 

Classification (SITC) rev.2 of the United Nations between 1962 and 2000 in US$ exported 

(30,51). 𝐸𝑖[… ] stands for Expected value. (B), Time averages of multilevel 𝐷𝐾𝐿 terms of 

equations (3.1) (striped column) and (3.2) (filled column) of number of YouTube views of 56 

online video clips of the nonprofit news channel DemocracyNow! over 6 binary-split levels, 

classified in types according to the number of comment per view (an indicator of the level of 

controversy of a clip). Presented as time averages of 𝐷𝐾𝐿  over 24 collected periods. Round 

inserts are zoomed-in excerpts of the same respective columns. 
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Fig. 2. Equation (7.2) decomposition of log fitness of fundraising amounts of 120 entrepreneurs 

from the international Microfunds platform Kiva.org (in US$ fundraised over a 4 day period) 

fine-grained in 7 binary-split levels classified in types according to the size of the intermediating 

partner organization (in total loans collected). The left column presents the fundraising effort 

from 08/07/13 to 08/09/13, and the right column from 08/09/13 to 08/11/13. Left axis: 

[log𝑤(𝑔0
𝑡,𝑡+1)]; Right axis: multilevel expression of [𝐷𝐾𝐿(𝑃𝑙

𝑡+1‖𝑃𝑙
𝑡+2) − 𝐷𝐾𝐿(𝑃𝑙

𝑡+1‖𝑃𝑙
𝑡)]. 

While growth rates slow down during the second period, the change of the evolutionary 

population constellation (measured in ∆𝐷𝐾𝐿) slows down even more drastically.  
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Fig. 3. Illustrative schematization of space-time requisite variety between the evolving system 

and its environment. (A), on the coarse-grained level 1 the figure distinguished between 

𝑝(𝑔𝑙=1 = ′𝐴′𝑛𝑔𝑖𝑜𝑠𝑝𝑒𝑟𝑚𝑠) and 𝑝(𝑔𝑙=1 = ′𝐶′𝑜𝑛𝑖𝑓𝑒𝑟𝑠), whose fitness responds differentially to 

the absence and presence of sun. It is assumed that conifers have higher relative fitness in the 

absence of sun, and vice versa. The environment is assumed to be distributed according to 

𝑝(𝑒 = 𝑠𝑢𝑛) = 0.4, and 𝑝(𝑒 = 𝑠𝑢𝑛) = 0.6. Empirically, the distinguishable relative fitness is 

what calls attention to the fact that the presence of the sun represents a “difference that makes a 

difference” (28). (B), Level 2 fine-grains the population into two different kinds of flowering 

plants, and two different kinds of conifer. The illustrative examples assumes that in the absence 

of sun, the tall skinny conifer d has superior fitness to its counterpart conifer c, while the relative 

fitness of flowering plants happens to depend on a further level of environmental fine-graining: 

the presence of snow or rain. 𝑤(𝑔𝑙=2|𝑒 = 𝑠𝑛𝑜𝑤, 𝑠𝑢𝑛) ≠ 𝑤(𝑔𝑙=2|𝑒 = 𝑟𝑎𝑖𝑛, 𝑠𝑢𝑛). As such, the 

detection of changing relative fitness patterns on a more fine-grained level of the evolving 

population, lead to fine-graining in the environmental states. In the presence of sun, the relative 

fitness constellation of distinct flowering plants depend on the intensity of the sun, while 

different conifers thrive in the absence and presence of wind. As a more formal proof of concept 

of these illustrative notions, Supporting Material (S7) applies this logic to the empirical case of 

the evolution of USA exports of goods in US$ grouped on the first level into manufacturing and 

non-manufacturing good, and on the second level into manufactured goods and machinery (both 

manufacturing), and edibles and substances (both non-manufacturing). 
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Supplementary Information: 

Sections: (S1) – (S4) 

Figures: Fig. SF.1 – Fig. SF.6 

Equations: (S.2.1.1) – (S.2.1.7)  

Supplementary Data 1 & 2 
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